User profile matching can establish social relationships between different users in the social network.If the user profile is matched in plaintext,the user's privacy might face a security challenge.Although there ...User profile matching can establish social relationships between different users in the social network.If the user profile is matched in plaintext,the user's privacy might face a security challenge.Although there exist some schemes realizing privacypreserving user profile matching,the resource-limited users or social service providers in these schemes need to take higher computational complexity to ensure the privacy or matching of the data.To overcome the problems,a novel privacy-preserving user profile matching protocol in social networks is proposed by using t-out-of n servers and the bloom filter technique,in which the computational complexity of a user is reduced by applying the Chinese Remainder Theorem,the matching users can be found with the help of any t matching servers,and the privacy of the user profile is not compromised.Furthermore,if at most t-1 servers are allowed to collude,our scheme can still fulfill user profile privacy and user query privacy.Finally,the performance of the proposed scheme is compared with the other two schemes,and the results show that our scheme is superior to them.展开更多
In cyberspace security,the privacy in location-based services(LBSs) becomes more critical. In previous solutions,a trusted third party(TTP) was usually employed to provide disturbance or obfuscation,but it may become ...In cyberspace security,the privacy in location-based services(LBSs) becomes more critical. In previous solutions,a trusted third party(TTP) was usually employed to provide disturbance or obfuscation,but it may become the single point of failure or service bottleneck. In order to cope with this drawback,we focus on another important class,establishing anonymous group through short-range communication to achieve k-anonymity with collaborative users. Along with the analysis of existing algorithms,we found users in the group must share the same maximum anonymity degree,and they could not ease the process of preservation in a lower one. To cope with this problem,we proposed a random-QBE algorithm to put up with personalized anonymity in user collaboration algorithms,and this algorithm could preserve both query privacy and location privacy. Then we studied the attacks from passive and active adversaries and used entropy to measure user's privacy level. Finally,experimental evaluations further verify its effectiveness and efficiency.展开更多
基金supported in part by the Natural Science Foundation of Beijing(no.4212019,M22002)the National Natural Science Foundation of China(no.62172005)+1 种基金the Open Research Fund of Key Laboratory of Cryptography of Zhejiang Province(No.ZCL21014)the Foundation of Guizhou Provincial Key Laboratory of Public Big Data(no.2019BDKF JJ012)。
文摘User profile matching can establish social relationships between different users in the social network.If the user profile is matched in plaintext,the user's privacy might face a security challenge.Although there exist some schemes realizing privacypreserving user profile matching,the resource-limited users or social service providers in these schemes need to take higher computational complexity to ensure the privacy or matching of the data.To overcome the problems,a novel privacy-preserving user profile matching protocol in social networks is proposed by using t-out-of n servers and the bloom filter technique,in which the computational complexity of a user is reduced by applying the Chinese Remainder Theorem,the matching users can be found with the help of any t matching servers,and the privacy of the user profile is not compromised.Furthermore,if at most t-1 servers are allowed to collude,our scheme can still fulfill user profile privacy and user query privacy.Finally,the performance of the proposed scheme is compared with the other two schemes,and the results show that our scheme is superior to them.
基金supported by the National Natural Science Foundation of China (Grant No.61472097)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20132304110017)+1 种基金the Natural Science Foundation of Heilongjiang Province of China (Grant No.F2015022)the Fujian Provincial Key Laboratory of Network Security and Cryptology Research Fund (Fujian Normal University) (No.15003)
文摘In cyberspace security,the privacy in location-based services(LBSs) becomes more critical. In previous solutions,a trusted third party(TTP) was usually employed to provide disturbance or obfuscation,but it may become the single point of failure or service bottleneck. In order to cope with this drawback,we focus on another important class,establishing anonymous group through short-range communication to achieve k-anonymity with collaborative users. Along with the analysis of existing algorithms,we found users in the group must share the same maximum anonymity degree,and they could not ease the process of preservation in a lower one. To cope with this problem,we proposed a random-QBE algorithm to put up with personalized anonymity in user collaboration algorithms,and this algorithm could preserve both query privacy and location privacy. Then we studied the attacks from passive and active adversaries and used entropy to measure user's privacy level. Finally,experimental evaluations further verify its effectiveness and efficiency.