We present a statistical method called Covering Topic Score (CTS) to predict query performance for information retrieval. Estimation is based on how well the topic of a user's query is covered by documents retrieve...We present a statistical method called Covering Topic Score (CTS) to predict query performance for information retrieval. Estimation is based on how well the topic of a user's query is covered by documents retrieved from a certain retrieval system. Our approach is conceptually simple and intuitive, and can be easily extended to incorporate features beyond bag- of-words such as phrases and proximity of terms. Experiments demonstrate that CTS significantly correlates with query performance in a variety of TREC test collections, and in particular CTS gains more prediction power benefiting from features of phrases and proximity of terms. We compare CTS with previous state-of-the-art methods for query performance prediction including clarity score and robustness score. Our experimental results show that CTS consistently performs better than, or at least as well as, these other methods. In addition to its high effectiveness, CTS is also shown to have very low computational complexity, meaning that it can be practical for real applications.展开更多
Efficient data management in healthcare is essential for providing timely and accurate patient care, yet traditional partitioning methods in relational databases often struggle with the high volume, heterogeneity, and...Efficient data management in healthcare is essential for providing timely and accurate patient care, yet traditional partitioning methods in relational databases often struggle with the high volume, heterogeneity, and regulatory complexity of healthcare data. This research introduces a tailored partitioning strategy leveraging the MD5 hashing algorithm to enhance data insertion, query performance, and load balancing in healthcare systems. By applying a consistent hash function to patient IDs, our approach achieves uniform distribution of records across partitions, optimizing retrieval paths and reducing access latency while ensuring data integrity and compliance. We evaluated the method through experiments focusing on partitioning efficiency, scalability, and fault tolerance. The partitioning efficiency analysis compared our MD5-based approach with standard round-robin methods, measuring insertion times, query latency, and data distribution balance. Scalability tests assessed system performance across increasing dataset sizes and varying partition counts, while fault tolerance experiments examined data integrity and retrieval performance under simulated partition failures. The experimental results demonstrate that the MD5-based partitioning strategy significantly reduces query retrieval times by optimizing data access patterns, achieving up to X% better performance compared to round-robin methods. It also scales effectively with larger datasets, maintaining low latency and ensuring robust resilience under failure scenarios. This novel approach offers a scalable, efficient, and fault-tolerant solution for healthcare systems, facilitating faster clinical decision-making and improved patient care in complex data environments.展开更多
Performance predictions for database queries allow service providers to determine what resources are needed to ensure their performance. Cost-based or rule-based approaches have been proposed to optimize database quer...Performance predictions for database queries allow service providers to determine what resources are needed to ensure their performance. Cost-based or rule-based approaches have been proposed to optimize database query execution plans. However, Virtual Machine (VM)-based database services have little or no sharing of resources or interactions between applications hosted on shared infrastructures. Neither providers nor users have the right combination of visibility/access/expertise to perform proper tuning and provisioning. This paper presents a performance prediction model for query execution time estimates based on the query complexity for various data sizes. The user query execution time is a combination of five basic operator complexities: O(1), O(log(n)), O(n), O(nlog(n)), and O(n2). Moreover, tests indicate that not all queries are equally important for performance prediction. As such, this paper illustrates a performance-sensitive query locating process on three benchmarks: RUBiS, RUBBoS, and TPC-W. A key observation is that performance-sensitive queries are only a small proportion (20%) of the application query set. Evaluation of the performance model on the TPC-W benchmark shows that the query complexity in a real life scenario has an average prediction error rate of less than 10% which demonstrates the effectiveness of this predictive model.展开更多
基金the National Natural Science Foundation of China under Grant No.60603094the National Grand Fundamental Research 973 Program of China under Grant No.2004CB318109
文摘We present a statistical method called Covering Topic Score (CTS) to predict query performance for information retrieval. Estimation is based on how well the topic of a user's query is covered by documents retrieved from a certain retrieval system. Our approach is conceptually simple and intuitive, and can be easily extended to incorporate features beyond bag- of-words such as phrases and proximity of terms. Experiments demonstrate that CTS significantly correlates with query performance in a variety of TREC test collections, and in particular CTS gains more prediction power benefiting from features of phrases and proximity of terms. We compare CTS with previous state-of-the-art methods for query performance prediction including clarity score and robustness score. Our experimental results show that CTS consistently performs better than, or at least as well as, these other methods. In addition to its high effectiveness, CTS is also shown to have very low computational complexity, meaning that it can be practical for real applications.
文摘Efficient data management in healthcare is essential for providing timely and accurate patient care, yet traditional partitioning methods in relational databases often struggle with the high volume, heterogeneity, and regulatory complexity of healthcare data. This research introduces a tailored partitioning strategy leveraging the MD5 hashing algorithm to enhance data insertion, query performance, and load balancing in healthcare systems. By applying a consistent hash function to patient IDs, our approach achieves uniform distribution of records across partitions, optimizing retrieval paths and reducing access latency while ensuring data integrity and compliance. We evaluated the method through experiments focusing on partitioning efficiency, scalability, and fault tolerance. The partitioning efficiency analysis compared our MD5-based approach with standard round-robin methods, measuring insertion times, query latency, and data distribution balance. Scalability tests assessed system performance across increasing dataset sizes and varying partition counts, while fault tolerance experiments examined data integrity and retrieval performance under simulated partition failures. The experimental results demonstrate that the MD5-based partitioning strategy significantly reduces query retrieval times by optimizing data access patterns, achieving up to X% better performance compared to round-robin methods. It also scales effectively with larger datasets, maintaining low latency and ensuring robust resilience under failure scenarios. This novel approach offers a scalable, efficient, and fault-tolerant solution for healthcare systems, facilitating faster clinical decision-making and improved patient care in complex data environments.
文摘Performance predictions for database queries allow service providers to determine what resources are needed to ensure their performance. Cost-based or rule-based approaches have been proposed to optimize database query execution plans. However, Virtual Machine (VM)-based database services have little or no sharing of resources or interactions between applications hosted on shared infrastructures. Neither providers nor users have the right combination of visibility/access/expertise to perform proper tuning and provisioning. This paper presents a performance prediction model for query execution time estimates based on the query complexity for various data sizes. The user query execution time is a combination of five basic operator complexities: O(1), O(log(n)), O(n), O(nlog(n)), and O(n2). Moreover, tests indicate that not all queries are equally important for performance prediction. As such, this paper illustrates a performance-sensitive query locating process on three benchmarks: RUBiS, RUBBoS, and TPC-W. A key observation is that performance-sensitive queries are only a small proportion (20%) of the application query set. Evaluation of the performance model on the TPC-W benchmark shows that the query complexity in a real life scenario has an average prediction error rate of less than 10% which demonstrates the effectiveness of this predictive model.