A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect ...A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect to the initial value. As an application, this proves the upper-bound of fractal dimension for its global attractor in the corresponding space.展开更多
A Riesz space K1 whose elements are pairs of convex-set collections is presented for the study on the calculus of generalized quasi-differentiable functions. The space K1 is constructed by introducing a well-defined e...A Riesz space K1 whose elements are pairs of convex-set collections is presented for the study on the calculus of generalized quasi-differentiable functions. The space K1 is constructed by introducing a well-defined equivalence relation among pairs of collections of convex sets. Some important properties on the norm and operations in K1 are given.展开更多
In this paper, we consider the general ordinary quasi-differential expression τ of order n with complex coefficients and its formal adjoint τ<sup>+</sup> on the interval [a,b). We shall show in the case ...In this paper, we consider the general ordinary quasi-differential expression τ of order n with complex coefficients and its formal adjoint τ<sup>+</sup> on the interval [a,b). We shall show in the case of one singular end-point and under suitable conditions that all solutions of a general ordinary quasi-differential equation are in the weighted Hilbert space provided that all solutions of the equations and its adjoint are in . Also, a number of results concerning the location of the point spectra and regularity fields of the operators generated by such expressions may be obtained. Some of these results are extensions or generalizations of those in the symmetric case, while the others are new.展开更多
In this paper, we consider the general quasi-differential expressions each of order n with complex coefficients and their formal adjoints on the interval (a,b). It is shown in direct sum spaces of functions defined on...In this paper, we consider the general quasi-differential expressions each of order n with complex coefficients and their formal adjoints on the interval (a,b). It is shown in direct sum spaces of functions defined on each of the separate intervals with the cases of one and two singular end-points and when all solutions of the equation and its adjoint are in (the limit circle case) that all well-posed extensions of the minimal operator have resolvents which are HilbertSchmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solvable operators have all the standard essential spectra to be empty. These results extend those of formally symmetric expression studied in [1-10] and those of general quasi-differential expressions in [11-19].展开更多
Given general quasi-differential expressions , each of order n with complex coefficients and their formal adjoint are on the interval [a,b) respectively, we give a characterization of all regularly solvable operators ...Given general quasi-differential expressions , each of order n with complex coefficients and their formal adjoint are on the interval [a,b) respectively, we give a characterization of all regularly solvable operators and their adjoints generated by a general ordinary quasi-differential expression in the direct sum Hilbert spaces . The domains of these operators are described in terms of boundary conditions involving -solutions of the equations and their adjoint on the intervals [a<sub>p</sub>,b<sub>p</sub>). This characterization is an extension of those obtained in the case of one interval with one and two singular end-points of the interval (a,b), and is a generalization of those proved in the case of self-adjoint and J-self-adjoint differential operators as a special case, where J denotes complex conjugation.展开更多
In this paper, we have considered the general ordinary quasi-differential operators generated by a general quasi-differential expression τ<sub>p,q</sub> in L<sup>p</sup>w</sub>-spaces of...In this paper, we have considered the general ordinary quasi-differential operators generated by a general quasi-differential expression τ<sub>p,q</sub> in L<sup>p</sup>w</sub>-spaces of order n with complex coefficients and its formal adjoint τ<sup>+</sup><sub>q',p' </sub>in L<sup>p</sup>w</sub>-spaces for arbitrary p,q∈[1,∞). We have proved in the case of one singular end-point that all well-posed extensions of the minimal operator T<sub>0</sub> (τ<sub>p,q</sub>) generated by such expression τ<sub>p,q</sub> and their formal adjoint on the interval [a,b) with maximal deficiency indices have resolvents which are Hilbert-Schmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solvable operators have all the standard essential spectra to be empty. Also, a number of results concerning the location of the point spectra and regularity fields of the operators generated by such expressions can be obtained. Some of these results are extensions or generalizations of those in the symmetric case, while others are new.展开更多
基金Supported by NSFC Grant(11401100,10601021)the foundation of Fujian Education Department(JB14021)the innovation foundation of Fujian Normal University(IRTL1206)
文摘A new approach, is established to show that the semigroup {S(t)≥0 generated by a reaction-diffusion equation with supercritical exponent is uniformly quasi-differentiable in L^q(Ω) (2 ≤ q 〈 ∞) with respect to the initial value. As an application, this proves the upper-bound of fractal dimension for its global attractor in the corresponding space.
文摘A Riesz space K1 whose elements are pairs of convex-set collections is presented for the study on the calculus of generalized quasi-differentiable functions. The space K1 is constructed by introducing a well-defined equivalence relation among pairs of collections of convex sets. Some important properties on the norm and operations in K1 are given.
文摘In this paper, we consider the general ordinary quasi-differential expression τ of order n with complex coefficients and its formal adjoint τ<sup>+</sup> on the interval [a,b). We shall show in the case of one singular end-point and under suitable conditions that all solutions of a general ordinary quasi-differential equation are in the weighted Hilbert space provided that all solutions of the equations and its adjoint are in . Also, a number of results concerning the location of the point spectra and regularity fields of the operators generated by such expressions may be obtained. Some of these results are extensions or generalizations of those in the symmetric case, while the others are new.
文摘In this paper, we consider the general quasi-differential expressions each of order n with complex coefficients and their formal adjoints on the interval (a,b). It is shown in direct sum spaces of functions defined on each of the separate intervals with the cases of one and two singular end-points and when all solutions of the equation and its adjoint are in (the limit circle case) that all well-posed extensions of the minimal operator have resolvents which are HilbertSchmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solvable operators have all the standard essential spectra to be empty. These results extend those of formally symmetric expression studied in [1-10] and those of general quasi-differential expressions in [11-19].
文摘Given general quasi-differential expressions , each of order n with complex coefficients and their formal adjoint are on the interval [a,b) respectively, we give a characterization of all regularly solvable operators and their adjoints generated by a general ordinary quasi-differential expression in the direct sum Hilbert spaces . The domains of these operators are described in terms of boundary conditions involving -solutions of the equations and their adjoint on the intervals [a<sub>p</sub>,b<sub>p</sub>). This characterization is an extension of those obtained in the case of one interval with one and two singular end-points of the interval (a,b), and is a generalization of those proved in the case of self-adjoint and J-self-adjoint differential operators as a special case, where J denotes complex conjugation.
文摘In this paper, we have considered the general ordinary quasi-differential operators generated by a general quasi-differential expression τ<sub>p,q</sub> in L<sup>p</sup>w</sub>-spaces of order n with complex coefficients and its formal adjoint τ<sup>+</sup><sub>q',p' </sub>in L<sup>p</sup>w</sub>-spaces for arbitrary p,q∈[1,∞). We have proved in the case of one singular end-point that all well-posed extensions of the minimal operator T<sub>0</sub> (τ<sub>p,q</sub>) generated by such expression τ<sub>p,q</sub> and their formal adjoint on the interval [a,b) with maximal deficiency indices have resolvents which are Hilbert-Schmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solvable operators have all the standard essential spectra to be empty. Also, a number of results concerning the location of the point spectra and regularity fields of the operators generated by such expressions can be obtained. Some of these results are extensions or generalizations of those in the symmetric case, while others are new.