Using the algorithm in this paper, we prove the existence of solutions to the gene-ralized strongly nonlinear quasi-complementarity problems and the convergence of theiterative sequences generated by the algorithm. Ou...Using the algorithm in this paper, we prove the existence of solutions to the gene-ralized strongly nonlinear quasi-complementarity problems and the convergence of theiterative sequences generated by the algorithm. Our results improve and extend thecorresponding results of Noor and Chang-Huang. Moreover, a more general iterativealgorithm for finding the approximate solution of generalized strongly nonlinear quasi-complementarity problems is also given. It is shown that the approximate solution ob-tained by the iterative scheme converges to the exact solution of this quasi-com-plementarity problem.展开更多
In this paper,we study a class of completely generalized strongly set-valued nonlinearquasi-complementarity problems and discuss the existence of solutions for this kind of quasi-complementariy problems without compac...In this paper,we study a class of completely generalized strongly set-valued nonlinearquasi-complementarity problems and discuss the existence of solutions for this kind of quasi-complementariy problems without compactness and the convergence of iterative sequencesgenerated by the algorithms.展开更多
In this paper,the modulus-based matrix splitting(MMS)iteration method is extended to solve the horizontal quasi-complementarity problem(HQCP),which is characterized by the presence of two system matrices and two nonli...In this paper,the modulus-based matrix splitting(MMS)iteration method is extended to solve the horizontal quasi-complementarity problem(HQCP),which is characterized by the presence of two system matrices and two nonlinear functions.Based on the specific matrix splitting of the system matrices,a series of MMS relaxation iteration methods are presented.Convergence analyses of the MMS iteration method are carefully studied when the system matrices are positive definite matrices and H_(+)-matrices,respectively.Finally,two numerical examples are given to illustrate the efficiency of the proposed MMS iteration methods.展开更多
文摘Using the algorithm in this paper, we prove the existence of solutions to the gene-ralized strongly nonlinear quasi-complementarity problems and the convergence of theiterative sequences generated by the algorithm. Our results improve and extend thecorresponding results of Noor and Chang-Huang. Moreover, a more general iterativealgorithm for finding the approximate solution of generalized strongly nonlinear quasi-complementarity problems is also given. It is shown that the approximate solution ob-tained by the iterative scheme converges to the exact solution of this quasi-com-plementarity problem.
文摘In this paper,we study a class of completely generalized strongly set-valued nonlinearquasi-complementarity problems and discuss the existence of solutions for this kind of quasi-complementariy problems without compactness and the convergence of iterative sequencesgenerated by the algorithms.
基金supported by the National Natural Science Foundation of China(No.11771225)the Qinglan Project of Jiangsu Province of Chinathe Science and Technology Project of Nantong City of China(No.JC2021198).
文摘In this paper,the modulus-based matrix splitting(MMS)iteration method is extended to solve the horizontal quasi-complementarity problem(HQCP),which is characterized by the presence of two system matrices and two nonlinear functions.Based on the specific matrix splitting of the system matrices,a series of MMS relaxation iteration methods are presented.Convergence analyses of the MMS iteration method are carefully studied when the system matrices are positive definite matrices and H_(+)-matrices,respectively.Finally,two numerical examples are given to illustrate the efficiency of the proposed MMS iteration methods.