Temperature affects the flotation of quartz in the calcium/sodium oleate(Na OL)system,while there is a lack of understanding of its potential mechanism.Therefore,in this work,the flotation response of quartz to temper...Temperature affects the flotation of quartz in the calcium/sodium oleate(Na OL)system,while there is a lack of understanding of its potential mechanism.Therefore,in this work,the flotation response of quartz to temperature was investigated via micro-flotation experiments,interface property analyses,and theoretical calculations.Flotation results demonstrated that increasing temperature contributed to higher flotation recovery of quartz,which enhanced the removal of quartz from hematite.Surface tension results revealed that higher temperatures lowered the critical micelle concentration(CMC)and surface tension of the Na OL solution,and thus enhanced its surface activity.Solution chemistry calculations and X-ray photoelectron spectroscopy(XPS)measurements confirmed that the increased content of Ca(OH)+achieved by increasing temperatures enhanced the adsorption amounts of calcium species(acting as activation sites)on the quartz surface.Dynamic light scattering(DLS)measurements verified that the association degree of RCOOàto form(RCOO)22àwas strengthened.Furthermore,adsorption density measurements and molecular dynamics(MD)simulations confirmed that increasing the temperature facilitated Na OL adsorption toward the surface of the quartz,which was attributed to the stronger interaction between Na OL and the calcium-activated quartz surface at higher temperatures.As a result,quartz flotation was improved by increasing temperatures.Accordingly,a possible adsorption model was proposed.展开更多
The complexation of phosphates in the quartz-metal ion-H_2O-oleate system was studied. Computer assisted calculations with the aid of the advanced program SOLGASWATER and known equilibrium constants were used to evalu...The complexation of phosphates in the quartz-metal ion-H_2O-oleate system was studied. Computer assisted calculations with the aid of the advanced program SOLGASWATER and known equilibrium constants were used to evaluate the mechanism,The calculation results revealed that in the presence of a certain amount of phosphates, metal ions adsorbed at the quartz-H_2O interface will be transferred into solution.Thus the competi- tion for metal ions between phosphates and the quartz surface leads to surface deactivation and re- duced floatability.Various distribution diagrams clearly demonstrate the change of surface complexation as a function of added phosphate concentration.The deactivation products were also evaluated.展开更多
The correlation between surface complexation at the SiO_(2)H_(2)O interface and quartz notation behavior was studied.Computer assisted calculations,using the programs SOLGASWATER,were adapted in order to con-struct di...The correlation between surface complexation at the SiO_(2)H_(2)O interface and quartz notation behavior was studied.Computer assisted calculations,using the programs SOLGASWATER,were adapted in order to con-struct distribution diagrams of surface speciation in the SiO_(2)-metal ion-H^(+) system in aqueous solutions.Equilib-rium constants for both surface and solution reactions were introduced in the composition matrix.Surface complexation,surface charge as well as notation results were compared and a good agreement was obtained.Furthermore,flotation mechanisms of quartz activation by common metal ions like Ca^(2+),Mg^(2+),Fe^(2+) are quantitatively discussed based on the surface reaction equilibrium constants.展开更多
基金supported by the Natio nal Natu ral Science Foundation of China(Nos.5187407251974064+1 种基金52174239)the Fundamental Research Funds for the Central Universities(No.N2101025)。
文摘Temperature affects the flotation of quartz in the calcium/sodium oleate(Na OL)system,while there is a lack of understanding of its potential mechanism.Therefore,in this work,the flotation response of quartz to temperature was investigated via micro-flotation experiments,interface property analyses,and theoretical calculations.Flotation results demonstrated that increasing temperature contributed to higher flotation recovery of quartz,which enhanced the removal of quartz from hematite.Surface tension results revealed that higher temperatures lowered the critical micelle concentration(CMC)and surface tension of the Na OL solution,and thus enhanced its surface activity.Solution chemistry calculations and X-ray photoelectron spectroscopy(XPS)measurements confirmed that the increased content of Ca(OH)+achieved by increasing temperatures enhanced the adsorption amounts of calcium species(acting as activation sites)on the quartz surface.Dynamic light scattering(DLS)measurements verified that the association degree of RCOOàto form(RCOO)22àwas strengthened.Furthermore,adsorption density measurements and molecular dynamics(MD)simulations confirmed that increasing the temperature facilitated Na OL adsorption toward the surface of the quartz,which was attributed to the stronger interaction between Na OL and the calcium-activated quartz surface at higher temperatures.As a result,quartz flotation was improved by increasing temperatures.Accordingly,a possible adsorption model was proposed.
文摘The complexation of phosphates in the quartz-metal ion-H_2O-oleate system was studied. Computer assisted calculations with the aid of the advanced program SOLGASWATER and known equilibrium constants were used to evaluate the mechanism,The calculation results revealed that in the presence of a certain amount of phosphates, metal ions adsorbed at the quartz-H_2O interface will be transferred into solution.Thus the competi- tion for metal ions between phosphates and the quartz surface leads to surface deactivation and re- duced floatability.Various distribution diagrams clearly demonstrate the change of surface complexation as a function of added phosphate concentration.The deactivation products were also evaluated.
文摘The correlation between surface complexation at the SiO_(2)H_(2)O interface and quartz notation behavior was studied.Computer assisted calculations,using the programs SOLGASWATER,were adapted in order to con-struct distribution diagrams of surface speciation in the SiO_(2)-metal ion-H^(+) system in aqueous solutions.Equilib-rium constants for both surface and solution reactions were introduced in the composition matrix.Surface complexation,surface charge as well as notation results were compared and a good agreement was obtained.Furthermore,flotation mechanisms of quartz activation by common metal ions like Ca^(2+),Mg^(2+),Fe^(2+) are quantitatively discussed based on the surface reaction equilibrium constants.