In this paper,a novel four-prong quartz tuning fork(QTF)was designed with enlarged deformation area,large prong gap,and low resonant frequency to improve its performance in laser spectroscopy sensing.A theoretical sim...In this paper,a novel four-prong quartz tuning fork(QTF)was designed with enlarged deformation area,large prong gap,and low resonant frequency to improve its performance in laser spectroscopy sensing.A theoretical simulation model was established to optimize the design of the QTF structure.In the simulation of quartz-enhanced photoacoustic spectroscopy(QEPAS)technology,the maximum stress and the surface charge density of the four-prong QTF demonstrated increases of 11.1-fold and 15.9-fold,respectively,compared to that of the standard two-prong QTF.In the simulation of light-induced thermoelastic spectroscopy(LITES)technology,the surface temperature difference of the four-prong QTF was found to be 11.4 times greater than that of the standard QTF.Experimental results indicated that the C_(2)H_(2)-QEPAS system based on this innovative design improved the signal-to-noise-ratio(SNR)by 4.67 times compared with the standard QTF-based system,and the SNR could increase up to 147.72 times when the four-prong QTF was equipped with its optimal acoustic micro-resonator(AmR).When the average time of the system reached 370 s,the system achieved a MDL as low as 21 ppb.The four-prong QTF-based C_(2)H_(2)-LITES system exhibited a SNR improvement by a factor of 4.52,and a MDL of 96 ppb was obtained when the average time of the system reached 100 s.The theoretical and experimental results effectively demonstrated the superiority of the four-prong QTF in the field of laser spectroscopy sensing.展开更多
This study presents a closed-form solution for central stress,a semi-analytical model,and a modified anisotropic semi-analytical model to efficiently calculate the forcefrequency coefficients(FFCs)of square quartz cry...This study presents a closed-form solution for central stress,a semi-analytical model,and a modified anisotropic semi-analytical model to efficiently calculate the forcefrequency coefficients(FFCs)of square quartz crystal resonators(QCRs)with different side lengths and azimuth angles under eccentrically concentrated and distributed loads.The semi-analytical model is validated by comparisons between the experimental results and the nonlinear finite element method(FEM)simulation results.Based on the semi-analytical model for the FFC and nonlinear FEM simulations,the FFC variations of square QCRs under external loads and the related mechanisms are investigated.Among the initial stresses caused by external loads,the central stress parallel to the xcrystallographic axis is the primary factor influencing the FFC of quartz.Our findings can provide practical tools for calculating the FFC,and help the design and development of square quartz force sensors.展开更多
Grooved tuning forks with hierarchical structures have become some of the most widely used piezoelectric quartz microelectromechanical system devices;however,fabricating these devices requires multi-step processes due...Grooved tuning forks with hierarchical structures have become some of the most widely used piezoelectric quartz microelectromechanical system devices;however,fabricating these devices requires multi-step processes due to the complexity of etching of quartz,particularly in specific orientations of the crystal lattice.This paper proposes a one-step fabrication strategy that can form a complete hierarchical structure with only a single etching process using novel lithography patterns.The core principle of this strategy is based on the effect of the size of the groove patterns on quartz etching,whereby trenches of varying depths can be created in a fixed etching time by adjusting the width of the hard mask.Specifically,the device outline and grooved structure can be completed using a seamlessly designed etching pattern and optimized time.Furthermore,the etching structure itself influences the etching results.It was found that dividing a wide trench by including a wall to separate it into two narrow trenches significantly reduces the etching rate,allowing for predictable tuning of the etching rate for wider grooves.This effectively increases the usability and flexibility of the one-step strategy.This was applied to the manufacture of an ultra-small quartz grooved tuning fork resonator with a frequency of 32.768 kHz in a single step,increasing production efficiency by almost 45%and reducing costs by almost 30%compared to current methods.This has great potential for improving the productivity of grooved tuning fork devices.It can also be extended to the fabrication of other quartz crystal devices requiring hierarchical structures.展开更多
The process mineralogy of kaolin associated quartz flotation concentrate was studied.The experimental results show that the content of SiO2 in the flotation concentrate is 99.66%,and the main impurity elements in the ...The process mineralogy of kaolin associated quartz flotation concentrate was studied.The experimental results show that the content of SiO2 in the flotation concentrate is 99.66%,and the main impurity elements in the concentrate are Al,Fe,K,and Na.The gangue minerals in the flotation concentrate are mainly mica and feldspar symbiosis with quartz in the form of connexion or mineral inclusion.By taking the flotation concentrate as the raw material,the experimental research on HF concentration,HCl concentration,HNO3 concentration,acid leaching temperature,acid leaching time,and the leaching liquid solid ratio of hot pressing acid leaching conditions was carried out.Finally,the factors affecting the quality of purified products were analyzed.Through the acid leaching experiment,it can be seen that hydrofluoric acid has a greater effect on Al and Fe elements,hydrochloric acid has a greater effect on Fe elements,and nitric acid concentration has a smaller effect on impurity elements(which can also be confirmed from the thermodynamic analysis);the acid leaching temperature,the acid leaching time,and the leaching liquid solid mass ratio are proportional to the acid leaching effect.The Al content decreases from 1304.73 to 214.10μg/g,and the aluminum removal rate is 86.12%.The Fe content decreases from 39.35 to 3.72μg/g,and the iron removal rate is 90.55%.Thermodynamic and kinetic studies show that at 220℃,the chemical reaction between quartz and gangue minerals and the leaching agent can be spontaneous in the direction of positive reaction,and gangue minerals and the leaching agent had priority reaction.The mixed acid leaching process accords with the diffusion control model,Ea is 15.16 kJ/mol,which can provide a theoretical guidance for the purification of quartz.展开更多
In order to suppress the influence of temperature changes on the performance of accelerometers,a digital quartz resonant accelerometer with low temperature drift is developed using a quartz resonator cluster as a tran...In order to suppress the influence of temperature changes on the performance of accelerometers,a digital quartz resonant accelerometer with low temperature drift is developed using a quartz resonator cluster as a transducer element.In addition,a digital intellectual property(IP) is designed in FPGA to achieve signal processing and fusion of integrated resonators.A testing system for digital quartz resonant accelerometers is established to characterize the performance under different conditions.The scale factor of the accelerometer prototype reaches 3561.63 Hz/g in the range of -1 g to +1 g,and 3542.5 Hz/g in the range of-10 g to+10 g.In different measurement ranges,the linear correlation coefficient R~2 of the accelerometer achieves greater than 0.998.The temperature drift of the accelerometer prototype is tested using a constant temperature test chamber,with a temperature change from -20℃ to 80℃.After temperature-drift compensation,the zero bias temperature coefficient falls to 0.08 mg/℃,and the scale factor temperature coefficient is 65.43 ppm/℃.The experimental results show that the digital quartz resonant accelerometer exhibits excellent sensitivity and low temperature drift.展开更多
Quartz trace elements are extensively employed in studying magmatic evolution,fluid evolution,and metal enrichment.The Bianjiadayuan Ag-Pb-Zn-Sn deposit is a typical magmatichydrothermal system in northeastern China,h...Quartz trace elements are extensively employed in studying magmatic evolution,fluid evolution,and metal enrichment.The Bianjiadayuan Ag-Pb-Zn-Sn deposit is a typical magmatichydrothermal system in northeastern China,however,studies on its complex magmatic-hydrothermal evolution are limited.This study investigates the quartz from the Bianjiadayuan deposit to gain insight into the physicochemical evolution of mineralization using cathodoluminescence(CL)textures and laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)of quartz.Five types quartz(Q1 to Q5)were identified.From Q1 in quartz porphyry to Q5 in Ag-Pb-Zn veins,the CL intensity and Ti content gradually decreases,and Ge,Ge/Ti,and Al/Ti ratios increase,indicating a temperature decline from magmatic to hydrothermal stages.The Sb content shows an opposite trend to Ti content,correlating positively with Ge content in quartz,suggesting that Sb content could also be temperature-dependent.These trace elements in quartz indicate cooling is critical for Ag mineralization.Furthermore,quartz phenocryst(Q1)from the quartz porphyry shows low Al/Ti(mostly<4)and Ge/Ti ratios(<0.04),suggesting a low degree of magmatic evolution.The Sb content in Q5 from Ag-Pb-Zn-quartz veins(>1 ppm,mostly tens of ppm)is notably higher compared to quartz in other lithologies including Sn-bearing quartz veins(<1 ppm),suggesting that Sb contents can serve as an effective indicator of Ag mineralization.展开更多
Laboratory and field observations have suggested a correlation between contact dynamics and slow dynamics.The underlying mechanical mechanisms at the contact level require investigation at the nanoscale.This study use...Laboratory and field observations have suggested a correlation between contact dynamics and slow dynamics.The underlying mechanical mechanisms at the contact level require investigation at the nanoscale.This study uses molecular dynamics(MD)simulations to investigate the interactions between two quartz plates separated by a water film,focusing on the relationship between adhesion force and separation distance.The density and orientation angle profiles were calculated from simulation data to investigate the relationship between the interfacial structure of the water film and contact potential.The simulations reveal multiple metastable states of the contact potential,consistent with existing theoretical models.The results show that the contact force is influenced by the structure of the water film,including oscillation forces and stratification.This provided verification and development for existing theoretical models based on metastable contacts.展开更多
The production processes for Si and FeSi have traditionally been considered slag-free.However,recent excavations have revealed significant accumulation of CaO–SiO_(2)–Al_(2)O_(3)slag within the furnaces.This accumul...The production processes for Si and FeSi have traditionally been considered slag-free.However,recent excavations have revealed significant accumulation of CaO–SiO_(2)–Al_(2)O_(3)slag within the furnaces.This accumulation can obstruct the flow of materials and gases,resulting in lower metal yield and higher energy consumption.The main objective of the current work is to enhance our understanding of slag formation during Si and FeSi production.We investigate slag formation through the dissolution of limestone and iron oxide in quartz and condensate,focusing on the reactions between these materials at a gram scale.Our findings indicate that most slag reaches equilibrium relatively quickly at temperatures starting from 1673 K.Notably,slag formation starts at lower temperature when the iron source is present (1573 K) compared to when only CaO is involved (1673 K).The minor elements tend to accumulate at quartz grain boundaries prior to slag formation.Furthermore,the slag produced from condensate contains less SiO_(2)than that generated from quartz with limestone.The type of quartz source and SiO_(2)phase appears to have little influence on slag formation.Good wettability is a significant factor in reaction between quartz and slag.FactSage calculations indicates that the viscosity of the slag ranges from 0.02 to 14.4 Pa·s under furnace conditions,comparable to the viscosity of honey or motor oil at room temperature.展开更多
Erratum to:https://doi.org/10.1007/s 00343-024-4040-x In this article,the Fig.2 b contained a few mistakes.The figure below shows the wrong on e.The figure should have appeared as shown below.
The rapid growth of semiconductor,photovoltaic,and other emerging industries has led to a sharp increase in the demand for high-purity quartz in China,particularly 4N5-grade(99.995%pure SiO_(2)).However,heavy reliance...The rapid growth of semiconductor,photovoltaic,and other emerging industries has led to a sharp increase in the demand for high-purity quartz in China,particularly 4N5-grade(99.995%pure SiO_(2)).However,heavy reliance on imported high-purity quartz poses a significant risk to the security of key national strategic industries.To address this challenge,China is focusing on identifying domestic sources of high-purity quartz and developing efficient evaluation methods.This study investigates the inclusion content in three types of quartz:pegmatite,vein quartz,and white granite.A grading system based on the transmittance of quartz grains was established by analyz-ing the number of inclusions.Five quartz ore samples from different regions were purified,and the resulting concentrates were analyzed using inductively coupled plasma mass spectrometry(ICP-MS).The relationships among the inclusion content of raw quartz,impurity composition of purified quartz,and quality of sintered fused quartz products were examined.The findings demonstrate that quartz with fewer inclusions results in lower impurity levels after purification,higher SiO_(2)purity,and more translucent glass,as confirmed by firing tests.Herein,this study establishes a clear connection between quartz inclusions and the overall quality of high-purity quartz.The pro-posed approach enables the rapid assessment of quartz deposit quality by identifying inclusions,offering a practical and efficient method for locating high-quality quartz resources.展开更多
Citronellol is a kind of terpene produced by plants in response to external stress;thus can be used as a gas biomarker to detect black spot Ceratocystis fimbriata infection in sweetpotato.However,many contemporary ana...Citronellol is a kind of terpene produced by plants in response to external stress;thus can be used as a gas biomarker to detect black spot Ceratocystis fimbriata infection in sweetpotato.However,many contemporary analytical methods,exemplified by gas chromatography-mass spectrometry,are technically demanding,time-consuming,and require complex sample preparation procedures.In this study,a quartz crystal microbalance(QCM)-based gas sensor fabricated via a surface molecular imprinting technique was modified with a Co/Zn-ZIF@MIP composite,in which cobalt-zinc bimetallic ZIF(Co/Zn-ZIF)served as the support material.A linear relationship was observed between the frequency shift and citronellol concentrations ranging from 0.88 to 22 mg/L,with a sensitivity of−6.08 Hz/(mg·L)and a limit of detection(LOD)of 1.35 mg/L.This result indicated that this sensor has excellent selectivity for citronellol and demonstrates high repeatability,as evidenced by R^(2)value of 0.97.In evaluations with real samples,the sensor reliably identified citronellol among the complex volatile organic compounds(VOCs)emitted from black spot-infected sweetpotato,indicating a high level of selectivity.Our research achieved the rapid characterization of sweetpotato black spot disease within 4 min and provided new insights into the development of QCM-based gas sensors for the rapid assessment of agricultural product quality and safety.展开更多
Laser etching and laser chemical vapor deposition(LCVD)techniques were proposed for the rapid preparation of high-purity,strongly bonded SiC porous micro-nano-coatings on quartz substrates.The laser serves as an exter...Laser etching and laser chemical vapor deposition(LCVD)techniques were proposed for the rapid preparation of high-purity,strongly bonded SiC porous micro-nano-coatings on quartz substrates.The laser serves as an external driving force for the vertical growth of SiC whiskers,facilitating the formation of a porous nanostructure that resembles coral models found in the macroscopic biological world.The porous nanostructures are beneficial for reducing thermal expansion mismatch and relieving residual stress.It is capable of eliminating the cracks on the surface of SiC coatings as well as enhancing the bonding of SiC coatings with quartz substrates to avoid coating detachment.展开更多
We observed sub-picosecond terahertz(THz)pulses generated from an electro-optic quartz plate using femtosecond optical pulses.The time-resolved THz radiation signal clearly indicates two separated THz pulses with oppo...We observed sub-picosecond terahertz(THz)pulses generated from an electro-optic quartz plate using femtosecond optical pulses.The time-resolved THz radiation signal clearly indicates two separated THz pulses with opposite polarity.Based on our results,a model based on optical-to-THz conversion via optical rectification is proposed to describe the twin pulsed THz emission mechanism of the quartz plate.Firstly,the two separated THz pulses are assigned to the forced and free THz pulses,respectively.With an optical pulse serving as an external source in the crystalline quartz,the forced THz pulse is a solution to linear Maxwell's equations and propagates at the velocity of the pump laser pulse,while the free THz pulse propagates with the group velocity in the THz frequency range.Finally,as a non-centrosymmetry material,the THz amplitude exhibits perfect threefold symmetry with respect to the azimuthal angle and twofold symmetry with respect to the pump polarization angle.展开更多
Quartz vein-type tungsten deposits are a common W deposit type.Their ore vein distribution was previously considered to be controlled by regional horizontal tectonic stress.In this paper,14 tungsten deposits with fan-...Quartz vein-type tungsten deposits are a common W deposit type.Their ore vein distribution was previously considered to be controlled by regional horizontal tectonic stress.In this paper,14 tungsten deposits with fan-shaped mineralization in SE China are summarized,and the relations between their ore veins and granite and the ore-forming structural stress field are analyzed.These deposits have a post-magmatic hydrothermal genesis and involve the formation of two sets of veins with similar strike and opposite dips at the top of the ore-causative granite bodies,forming a vertical fan-shaped profile.Their ore veins were coeval with the underlying granite bodies,and generally extend along the long axis of the granite.In such fan-shaped ore formation,the stress is highly focused at the top of the granite and gradually weakens outward.The maximum principal stress(σ1)is perpendicular to the granite contact surface,and radiates outward from the pluton.Meanwhile,the minimum principal stress(σ3)forms an arc-shaped band parallel to the contact surface.Our findings,together with published numerical modeling indicate that the emplacement dynamics of granitic magma(rather than regional horizontal tectonic stress)are essential controls on the distribution of ore veins in quartz vein-type tungsten deposits.展开更多
The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor...The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise,often complicated by the coexistence of other minerals.This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals.The utilizied four advanced deep learning models—PSPNet,U-Net,FPN,and LinkNet—has significant advancements in efficiency and accuracy.Among these models,PSPNet exhibited superior performance,achieving the highest intersection over union(IoU)scores and demonstrating exceptional reliability in segmenting quartz minerals,even in complex scenarios.The study involved a comprehensive dataset of 120 thin sections,encompassing 2470 hyperspectral images prepared from 20 rock samples.Expert-reviewed masks were used for model training,ensuring robust segmentation results.This automated approach not only expedites the recognition process but also enhances reliability,providing a valuable tool for geologists and advancing the field of mineralogical analysis.展开更多
Transparent sand is a special material to realize visualization of concealed work in geotechnical engineering. To investigate the dynamic characteristics of transparent sand, a series of undrained cyclic simple shear ...Transparent sand is a special material to realize visualization of concealed work in geotechnical engineering. To investigate the dynamic characteristics of transparent sand, a series of undrained cyclic simple shear tests were conducted on the saturated transparent sand composed of fused quartz and refractive index-matched oil mixture. The results reveal that an increase in the initial shear stress ratio significantly affects the shape of the hysteresis loop, particularly resulting in more pronounced asymmetrical accumulation. Factors such as lower relative density, higher cyclic stress ratios and higher initial shear stress ratio have been shown to accelerate cyclic deformation, cyclic pore water pressure and stiffness degradation. The cyclic liquefaction resistance curves decrease as the initial shear stress ratio increases or as relative density decreases. Booker model and power law function model were applied to predict the pore water pressure for transparent sand. Both models yielded excellent fits for their respective condition, indicating a similar dynamic liquefaction pattern to that of natural sands. Finally, transparent sand displays similar dynamic characteristics in terms of cyclic liquefaction resistance and Kα correction factor. These comparisons indicate that transparent sand can serve as an effective means to mimic many natural sands in dynamic model tests.展开更多
Mussels are common anchoring organisms that adhere to the surfaces of various substrates with their byssus.The adhesion of mussel to substrates is contingent upon the presence of mussel foot proteins,of which Mytilus ...Mussels are common anchoring organisms that adhere to the surfaces of various substrates with their byssus.The adhesion of mussel to substrates is contingent upon the presence of mussel foot proteins,of which Mytilus edulis foot protein-1(Mefp-1)has been identified as the most abundant protein.It has been found that lipids are involved in the mussel adhesion process and can facilitate Mefp-1adhesion.In this research,the adhesion behavior of Mefp-1 on various substrate surfaces under the effect of typical seawater cations with or without the presence of lipid were investigated using a quartz crystal microbalance with dissipation(QCM-D).Results indicate that the presence of cations Ca^(2+),Mg^(2+),Na^(+),and K^(+)leads to varying degrees of reduction in the adhesion performance of Mefp-1 on different substrates.The degree of this reduction,however,was much alleviated in the presence of palmitic acid,which is involved in the mussel adhesion process.Therefore,the involvement of palmitic acid is advantageous for mussel protein adhesion to the substrate surface in the marine environment.This study illustrated the significant contribution of palmitic acid to mussel adhesion,which can help to better understand biofouling mechanisms and develop biomimetic adhesive materials.展开更多
Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency...Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency and geometrical precision are required.Wet etching has been proven to be the most efficient etching method for large-scale production of quartz devices,and many wet etching approaches have been developed over the years.However,until now,there has been no systematic review of quartz crystal etching in liquid phase environments.Therefore,this article provides a comprehensive review of the development of wet etching processes and the achievements of the latest research in thisfield,covering conventional wet etching,additive etching,laser-induced backside wet etching,electrochemical etching,and electrochemical discharge machining.For each technique,a brief overview of its characteristics is provided,associated problems are described,and possible solutions are discussed.This review should provide an essential reference and guidance for the future development of processing strategies for the manufacture of quartz crystal devices.展开更多
The physical and chemical properties of feldspar and quartz are highly similar,thus they cannot be easily separated effectively.In this work,the flotation separation of feldspar from quartz using sodium fluosilicate(N...The physical and chemical properties of feldspar and quartz are highly similar,thus they cannot be easily separated effectively.In this work,the flotation separation of feldspar from quartz using sodium fluosilicate(Na_(2)SiF_(6);SF)as a selective depressant was investigated.Moreover,the influence mechanism of SF on the selective flotation separation of feldspar and quartz was investigated via flotation tests,chemical analysis of flotation solution,Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and contact angle analysis.The results of the flotation tests show that feld spar and quartz without SF treatment have good floatability.After SF treatment,feldspar still has good floatability,whereas quartz has significantly reduced floatability.Flotation solution chemical analysis shows that the functional group plays an important role in depressing the quartz is[SiF_(6)]^(2-).FTIR,XPS and contact angle analysis results show that[SiF_(6)]^(2-)is adsorbed only on the surface of quartz.Thus,a thin hydrophilic SiOF layer is generated on the surface,which interferes with the adsorption of the collector on the surface of the quartz.This phenomenon leads to a significant reduction in quartz's floatability.Therefore,SF has a good ability to separate feldspar from quartz by flotation.展开更多
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or...The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.展开更多
基金supports from the National Natural Science Foundation of China(Grant Nos.62335006,62022032,62275065,and 62405078)Key Laboratory of Opto-Electronic Information Acquisition and Manipulation(Anhui University),Ministry of Education(Grant No.OEIAM202202)+2 种基金Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2023011)China Postdoctoral Science Foundation(Grant No.2024M764172)Heilongjiang Postdoctoral Fund(Grant No.LBH-Z23144).
文摘In this paper,a novel four-prong quartz tuning fork(QTF)was designed with enlarged deformation area,large prong gap,and low resonant frequency to improve its performance in laser spectroscopy sensing.A theoretical simulation model was established to optimize the design of the QTF structure.In the simulation of quartz-enhanced photoacoustic spectroscopy(QEPAS)technology,the maximum stress and the surface charge density of the four-prong QTF demonstrated increases of 11.1-fold and 15.9-fold,respectively,compared to that of the standard two-prong QTF.In the simulation of light-induced thermoelastic spectroscopy(LITES)technology,the surface temperature difference of the four-prong QTF was found to be 11.4 times greater than that of the standard QTF.Experimental results indicated that the C_(2)H_(2)-QEPAS system based on this innovative design improved the signal-to-noise-ratio(SNR)by 4.67 times compared with the standard QTF-based system,and the SNR could increase up to 147.72 times when the four-prong QTF was equipped with its optimal acoustic micro-resonator(AmR).When the average time of the system reached 370 s,the system achieved a MDL as low as 21 ppb.The four-prong QTF-based C_(2)H_(2)-LITES system exhibited a SNR improvement by a factor of 4.52,and a MDL of 96 ppb was obtained when the average time of the system reached 100 s.The theoretical and experimental results effectively demonstrated the superiority of the four-prong QTF in the field of laser spectroscopy sensing.
基金supported by the Ningbo Youth Science and Technology Innovation Leading Talents of China(No.2023QL020)the Ningbo Science and Technology Major of China(No.2022Z015)the K.C.Wong Magana Fund through Ningbo University。
文摘This study presents a closed-form solution for central stress,a semi-analytical model,and a modified anisotropic semi-analytical model to efficiently calculate the forcefrequency coefficients(FFCs)of square quartz crystal resonators(QCRs)with different side lengths and azimuth angles under eccentrically concentrated and distributed loads.The semi-analytical model is validated by comparisons between the experimental results and the nonlinear finite element method(FEM)simulation results.Based on the semi-analytical model for the FFC and nonlinear FEM simulations,the FFC variations of square QCRs under external loads and the related mechanisms are investigated.Among the initial stresses caused by external loads,the central stress parallel to the xcrystallographic axis is the primary factor influencing the FFC of quartz.Our findings can provide practical tools for calculating the FFC,and help the design and development of square quartz force sensors.
文摘Grooved tuning forks with hierarchical structures have become some of the most widely used piezoelectric quartz microelectromechanical system devices;however,fabricating these devices requires multi-step processes due to the complexity of etching of quartz,particularly in specific orientations of the crystal lattice.This paper proposes a one-step fabrication strategy that can form a complete hierarchical structure with only a single etching process using novel lithography patterns.The core principle of this strategy is based on the effect of the size of the groove patterns on quartz etching,whereby trenches of varying depths can be created in a fixed etching time by adjusting the width of the hard mask.Specifically,the device outline and grooved structure can be completed using a seamlessly designed etching pattern and optimized time.Furthermore,the etching structure itself influences the etching results.It was found that dividing a wide trench by including a wall to separate it into two narrow trenches significantly reduces the etching rate,allowing for predictable tuning of the etching rate for wider grooves.This effectively increases the usability and flexibility of the one-step strategy.This was applied to the manufacture of an ultra-small quartz grooved tuning fork resonator with a frequency of 32.768 kHz in a single step,increasing production efficiency by almost 45%and reducing costs by almost 30%compared to current methods.This has great potential for improving the productivity of grooved tuning fork devices.It can also be extended to the fabrication of other quartz crystal devices requiring hierarchical structures.
文摘The process mineralogy of kaolin associated quartz flotation concentrate was studied.The experimental results show that the content of SiO2 in the flotation concentrate is 99.66%,and the main impurity elements in the concentrate are Al,Fe,K,and Na.The gangue minerals in the flotation concentrate are mainly mica and feldspar symbiosis with quartz in the form of connexion or mineral inclusion.By taking the flotation concentrate as the raw material,the experimental research on HF concentration,HCl concentration,HNO3 concentration,acid leaching temperature,acid leaching time,and the leaching liquid solid ratio of hot pressing acid leaching conditions was carried out.Finally,the factors affecting the quality of purified products were analyzed.Through the acid leaching experiment,it can be seen that hydrofluoric acid has a greater effect on Al and Fe elements,hydrochloric acid has a greater effect on Fe elements,and nitric acid concentration has a smaller effect on impurity elements(which can also be confirmed from the thermodynamic analysis);the acid leaching temperature,the acid leaching time,and the leaching liquid solid mass ratio are proportional to the acid leaching effect.The Al content decreases from 1304.73 to 214.10μg/g,and the aluminum removal rate is 86.12%.The Fe content decreases from 39.35 to 3.72μg/g,and the iron removal rate is 90.55%.Thermodynamic and kinetic studies show that at 220℃,the chemical reaction between quartz and gangue minerals and the leaching agent can be spontaneous in the direction of positive reaction,and gangue minerals and the leaching agent had priority reaction.The mixed acid leaching process accords with the diffusion control model,Ea is 15.16 kJ/mol,which can provide a theoretical guidance for the purification of quartz.
文摘In order to suppress the influence of temperature changes on the performance of accelerometers,a digital quartz resonant accelerometer with low temperature drift is developed using a quartz resonator cluster as a transducer element.In addition,a digital intellectual property(IP) is designed in FPGA to achieve signal processing and fusion of integrated resonators.A testing system for digital quartz resonant accelerometers is established to characterize the performance under different conditions.The scale factor of the accelerometer prototype reaches 3561.63 Hz/g in the range of -1 g to +1 g,and 3542.5 Hz/g in the range of-10 g to+10 g.In different measurement ranges,the linear correlation coefficient R~2 of the accelerometer achieves greater than 0.998.The temperature drift of the accelerometer prototype is tested using a constant temperature test chamber,with a temperature change from -20℃ to 80℃.After temperature-drift compensation,the zero bias temperature coefficient falls to 0.08 mg/℃,and the scale factor temperature coefficient is 65.43 ppm/℃.The experimental results show that the digital quartz resonant accelerometer exhibits excellent sensitivity and low temperature drift.
基金supported by the National Natural Science Foundation of China(No.42222205)the National Key Research and Development Program of China(No.2017YFC0602403)the Fundamental Research Funds for the Central Universities,CHD(No.300102273301)。
文摘Quartz trace elements are extensively employed in studying magmatic evolution,fluid evolution,and metal enrichment.The Bianjiadayuan Ag-Pb-Zn-Sn deposit is a typical magmatichydrothermal system in northeastern China,however,studies on its complex magmatic-hydrothermal evolution are limited.This study investigates the quartz from the Bianjiadayuan deposit to gain insight into the physicochemical evolution of mineralization using cathodoluminescence(CL)textures and laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)of quartz.Five types quartz(Q1 to Q5)were identified.From Q1 in quartz porphyry to Q5 in Ag-Pb-Zn veins,the CL intensity and Ti content gradually decreases,and Ge,Ge/Ti,and Al/Ti ratios increase,indicating a temperature decline from magmatic to hydrothermal stages.The Sb content shows an opposite trend to Ti content,correlating positively with Ge content in quartz,suggesting that Sb content could also be temperature-dependent.These trace elements in quartz indicate cooling is critical for Ag mineralization.Furthermore,quartz phenocryst(Q1)from the quartz porphyry shows low Al/Ti(mostly<4)and Ge/Ti ratios(<0.04),suggesting a low degree of magmatic evolution.The Sb content in Q5 from Ag-Pb-Zn-quartz veins(>1 ppm,mostly tens of ppm)is notably higher compared to quartz in other lithologies including Sn-bearing quartz veins(<1 ppm),suggesting that Sb contents can serve as an effective indicator of Ag mineralization.
文摘Laboratory and field observations have suggested a correlation between contact dynamics and slow dynamics.The underlying mechanical mechanisms at the contact level require investigation at the nanoscale.This study uses molecular dynamics(MD)simulations to investigate the interactions between two quartz plates separated by a water film,focusing on the relationship between adhesion force and separation distance.The density and orientation angle profiles were calculated from simulation data to investigate the relationship between the interfacial structure of the water film and contact potential.The simulations reveal multiple metastable states of the contact potential,consistent with existing theoretical models.The results show that the contact force is influenced by the structure of the water film,including oscillation forces and stratification.This provided verification and development for existing theoretical models based on metastable contacts.
基金financially supported by the Norwegian Ferroalloy Producers Research Association (FFF) and the Research Council of Norway through KSP project 326581 Recursive。
文摘The production processes for Si and FeSi have traditionally been considered slag-free.However,recent excavations have revealed significant accumulation of CaO–SiO_(2)–Al_(2)O_(3)slag within the furnaces.This accumulation can obstruct the flow of materials and gases,resulting in lower metal yield and higher energy consumption.The main objective of the current work is to enhance our understanding of slag formation during Si and FeSi production.We investigate slag formation through the dissolution of limestone and iron oxide in quartz and condensate,focusing on the reactions between these materials at a gram scale.Our findings indicate that most slag reaches equilibrium relatively quickly at temperatures starting from 1673 K.Notably,slag formation starts at lower temperature when the iron source is present (1573 K) compared to when only CaO is involved (1673 K).The minor elements tend to accumulate at quartz grain boundaries prior to slag formation.Furthermore,the slag produced from condensate contains less SiO_(2)than that generated from quartz with limestone.The type of quartz source and SiO_(2)phase appears to have little influence on slag formation.Good wettability is a significant factor in reaction between quartz and slag.FactSage calculations indicates that the viscosity of the slag ranges from 0.02 to 14.4 Pa·s under furnace conditions,comparable to the viscosity of honey or motor oil at room temperature.
文摘Erratum to:https://doi.org/10.1007/s 00343-024-4040-x In this article,the Fig.2 b contained a few mistakes.The figure below shows the wrong on e.The figure should have appeared as shown below.
基金financially supported by the Consulting Research Project of the Chinese Academy of Engineering,China(Nos.2024-XBZD-10 and 2024-XZ-20).
文摘The rapid growth of semiconductor,photovoltaic,and other emerging industries has led to a sharp increase in the demand for high-purity quartz in China,particularly 4N5-grade(99.995%pure SiO_(2)).However,heavy reliance on imported high-purity quartz poses a significant risk to the security of key national strategic industries.To address this challenge,China is focusing on identifying domestic sources of high-purity quartz and developing efficient evaluation methods.This study investigates the inclusion content in three types of quartz:pegmatite,vein quartz,and white granite.A grading system based on the transmittance of quartz grains was established by analyz-ing the number of inclusions.Five quartz ore samples from different regions were purified,and the resulting concentrates were analyzed using inductively coupled plasma mass spectrometry(ICP-MS).The relationships among the inclusion content of raw quartz,impurity composition of purified quartz,and quality of sintered fused quartz products were examined.The findings demonstrate that quartz with fewer inclusions results in lower impurity levels after purification,higher SiO_(2)purity,and more translucent glass,as confirmed by firing tests.Herein,this study establishes a clear connection between quartz inclusions and the overall quality of high-purity quartz.The pro-posed approach enables the rapid assessment of quartz deposit quality by identifying inclusions,offering a practical and efficient method for locating high-quality quartz resources.
基金support of the Earmarked Fund for CARS-10-Sweetpotato,China,the National Foundation of Nature and Science of China(Nos.32102083 and M2242001)the Natural Science Foundation of Shandong Province of China(Nos.ZR2021QC204 and ZR2022MC196).
文摘Citronellol is a kind of terpene produced by plants in response to external stress;thus can be used as a gas biomarker to detect black spot Ceratocystis fimbriata infection in sweetpotato.However,many contemporary analytical methods,exemplified by gas chromatography-mass spectrometry,are technically demanding,time-consuming,and require complex sample preparation procedures.In this study,a quartz crystal microbalance(QCM)-based gas sensor fabricated via a surface molecular imprinting technique was modified with a Co/Zn-ZIF@MIP composite,in which cobalt-zinc bimetallic ZIF(Co/Zn-ZIF)served as the support material.A linear relationship was observed between the frequency shift and citronellol concentrations ranging from 0.88 to 22 mg/L,with a sensitivity of−6.08 Hz/(mg·L)and a limit of detection(LOD)of 1.35 mg/L.This result indicated that this sensor has excellent selectivity for citronellol and demonstrates high repeatability,as evidenced by R^(2)value of 0.97.In evaluations with real samples,the sensor reliably identified citronellol among the complex volatile organic compounds(VOCs)emitted from black spot-infected sweetpotato,indicating a high level of selectivity.Our research achieved the rapid characterization of sweetpotato black spot disease within 4 min and provided new insights into the development of QCM-based gas sensors for the rapid assessment of agricultural product quality and safety.
基金Funded by the International Science&Technology Cooperation Program of Hubei Province of China(No.2022EHB024)the National Key Research and Development Plan(Nos.2018YFE0103600 and 2021YFB3703100)+1 种基金the National Natural Science Foundation of China(Nos.51872212,51972244,52002075,and 52102066)the 111 Project(No.B13035)。
文摘Laser etching and laser chemical vapor deposition(LCVD)techniques were proposed for the rapid preparation of high-purity,strongly bonded SiC porous micro-nano-coatings on quartz substrates.The laser serves as an external driving force for the vertical growth of SiC whiskers,facilitating the formation of a porous nanostructure that resembles coral models found in the macroscopic biological world.The porous nanostructures are beneficial for reducing thermal expansion mismatch and relieving residual stress.It is capable of eliminating the cracks on the surface of SiC coatings as well as enhancing the bonding of SiC coatings with quartz substrates to avoid coating detachment.
基金Project supported by the National Key Research and Development Program of China(Grant No.2023YFF0719200)the National Natural Science Foundation of China(Grant Nos.62322115,U24A20226,61988102,and 62435010)+1 种基金111 Project(Grant No.D18014)Science and Technology Commission of Shanghai Municipality(Grant Nos.22JC1400200 and 21S31907400)。
文摘We observed sub-picosecond terahertz(THz)pulses generated from an electro-optic quartz plate using femtosecond optical pulses.The time-resolved THz radiation signal clearly indicates two separated THz pulses with opposite polarity.Based on our results,a model based on optical-to-THz conversion via optical rectification is proposed to describe the twin pulsed THz emission mechanism of the quartz plate.Firstly,the two separated THz pulses are assigned to the forced and free THz pulses,respectively.With an optical pulse serving as an external source in the crystalline quartz,the forced THz pulse is a solution to linear Maxwell's equations and propagates at the velocity of the pump laser pulse,while the free THz pulse propagates with the group velocity in the THz frequency range.Finally,as a non-centrosymmetry material,the THz amplitude exhibits perfect threefold symmetry with respect to the azimuthal angle and twofold symmetry with respect to the pump polarization angle.
基金funded by the National Key Research&Development Program of China(No.2021YFC2900100)the Guangxi Natural Science Foundation(No.2022GXNSFFA035025)+3 种基金the Chinese National Natural Science Foundation(No.42372099)the China Geological Survey(No.DD20190379)the Science&Technology Fundamental Resources Investigation Program(No.2022FY101800)the Major Talent Program of Guangxi Zhuang Autonomous Region,and the Innovation Project of Guangxi Graduate Education(No.YCSW2023345)。
文摘Quartz vein-type tungsten deposits are a common W deposit type.Their ore vein distribution was previously considered to be controlled by regional horizontal tectonic stress.In this paper,14 tungsten deposits with fan-shaped mineralization in SE China are summarized,and the relations between their ore veins and granite and the ore-forming structural stress field are analyzed.These deposits have a post-magmatic hydrothermal genesis and involve the formation of two sets of veins with similar strike and opposite dips at the top of the ore-causative granite bodies,forming a vertical fan-shaped profile.Their ore veins were coeval with the underlying granite bodies,and generally extend along the long axis of the granite.In such fan-shaped ore formation,the stress is highly focused at the top of the granite and gradually weakens outward.The maximum principal stress(σ1)is perpendicular to the granite contact surface,and radiates outward from the pluton.Meanwhile,the minimum principal stress(σ3)forms an arc-shaped band parallel to the contact surface.Our findings,together with published numerical modeling indicate that the emplacement dynamics of granitic magma(rather than regional horizontal tectonic stress)are essential controls on the distribution of ore veins in quartz vein-type tungsten deposits.
文摘The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise,often complicated by the coexistence of other minerals.This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals.The utilizied four advanced deep learning models—PSPNet,U-Net,FPN,and LinkNet—has significant advancements in efficiency and accuracy.Among these models,PSPNet exhibited superior performance,achieving the highest intersection over union(IoU)scores and demonstrating exceptional reliability in segmenting quartz minerals,even in complex scenarios.The study involved a comprehensive dataset of 120 thin sections,encompassing 2470 hyperspectral images prepared from 20 rock samples.Expert-reviewed masks were used for model training,ensuring robust segmentation results.This automated approach not only expedites the recognition process but also enhances reliability,providing a valuable tool for geologists and advancing the field of mineralogical analysis.
基金Project(U2268213) supported by the National Natural Science Foundation of ChinaProject(2024YFHZ0121) supported by the Sichuan Science and Technology Program,China。
文摘Transparent sand is a special material to realize visualization of concealed work in geotechnical engineering. To investigate the dynamic characteristics of transparent sand, a series of undrained cyclic simple shear tests were conducted on the saturated transparent sand composed of fused quartz and refractive index-matched oil mixture. The results reveal that an increase in the initial shear stress ratio significantly affects the shape of the hysteresis loop, particularly resulting in more pronounced asymmetrical accumulation. Factors such as lower relative density, higher cyclic stress ratios and higher initial shear stress ratio have been shown to accelerate cyclic deformation, cyclic pore water pressure and stiffness degradation. The cyclic liquefaction resistance curves decrease as the initial shear stress ratio increases or as relative density decreases. Booker model and power law function model were applied to predict the pore water pressure for transparent sand. Both models yielded excellent fits for their respective condition, indicating a similar dynamic liquefaction pattern to that of natural sands. Finally, transparent sand displays similar dynamic characteristics in terms of cyclic liquefaction resistance and Kα correction factor. These comparisons indicate that transparent sand can serve as an effective means to mimic many natural sands in dynamic model tests.
基金Supported by the National Natural Science Foundation of China(No.41776177)the Qingdao Marine Science and Technology Pilot National Laboratory Fund(Nos.2016ASKJ14,QNLM2016ORP0403)。
文摘Mussels are common anchoring organisms that adhere to the surfaces of various substrates with their byssus.The adhesion of mussel to substrates is contingent upon the presence of mussel foot proteins,of which Mytilus edulis foot protein-1(Mefp-1)has been identified as the most abundant protein.It has been found that lipids are involved in the mussel adhesion process and can facilitate Mefp-1adhesion.In this research,the adhesion behavior of Mefp-1 on various substrate surfaces under the effect of typical seawater cations with or without the presence of lipid were investigated using a quartz crystal microbalance with dissipation(QCM-D).Results indicate that the presence of cations Ca^(2+),Mg^(2+),Na^(+),and K^(+)leads to varying degrees of reduction in the adhesion performance of Mefp-1 on different substrates.The degree of this reduction,however,was much alleviated in the presence of palmitic acid,which is involved in the mussel adhesion process.Therefore,the involvement of palmitic acid is advantageous for mussel protein adhesion to the substrate surface in the marine environment.This study illustrated the significant contribution of palmitic acid to mussel adhesion,which can help to better understand biofouling mechanisms and develop biomimetic adhesive materials.
基金supported by the Natural Science Foundation of China (Grant No.12234005)the major research and development program of Jiangsu Province (Grant Nos.BE2021007-2 and BK20222007)。
文摘Quartz crystals are the most widely used material in resonant sensors,owing to their excellent piezoelectric and mechanical properties.With the development of portable and wearable devices,higher processing efficiency and geometrical precision are required.Wet etching has been proven to be the most efficient etching method for large-scale production of quartz devices,and many wet etching approaches have been developed over the years.However,until now,there has been no systematic review of quartz crystal etching in liquid phase environments.Therefore,this article provides a comprehensive review of the development of wet etching processes and the achievements of the latest research in thisfield,covering conventional wet etching,additive etching,laser-induced backside wet etching,electrochemical etching,and electrochemical discharge machining.For each technique,a brief overview of its characteristics is provided,associated problems are described,and possible solutions are discussed.This review should provide an essential reference and guidance for the future development of processing strategies for the manufacture of quartz crystal devices.
基金financially supported by the Project of the National Natural Science Foundation of China(No.52274263)the Key R&D Plan Projects in Jiangxi Province(No.20214BBG74001)。
文摘The physical and chemical properties of feldspar and quartz are highly similar,thus they cannot be easily separated effectively.In this work,the flotation separation of feldspar from quartz using sodium fluosilicate(Na_(2)SiF_(6);SF)as a selective depressant was investigated.Moreover,the influence mechanism of SF on the selective flotation separation of feldspar and quartz was investigated via flotation tests,chemical analysis of flotation solution,Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS)and contact angle analysis.The results of the flotation tests show that feld spar and quartz without SF treatment have good floatability.After SF treatment,feldspar still has good floatability,whereas quartz has significantly reduced floatability.Flotation solution chemical analysis shows that the functional group plays an important role in depressing the quartz is[SiF_(6)]^(2-).FTIR,XPS and contact angle analysis results show that[SiF_(6)]^(2-)is adsorbed only on the surface of quartz.Thus,a thin hydrophilic SiOF layer is generated on the surface,which interferes with the adsorption of the collector on the surface of the quartz.This phenomenon leads to a significant reduction in quartz's floatability.Therefore,SF has a good ability to separate feldspar from quartz by flotation.
基金support of Shanxi Province Major Science and Technology Projects,China (No.20191101002).
文摘The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.