The Clauser Horne--Shimony-Holt-type noncontextuality inequality and the Svetliehny inequality are derived from the Alicki-van Ryn quantumness witness. Thus connections between quantumness and quantum contextuality, a...The Clauser Horne--Shimony-Holt-type noncontextuality inequality and the Svetliehny inequality are derived from the Alicki-van Ryn quantumness witness. Thus connections between quantumness and quantum contextuality, and between quantumness and genuine multipartite nonlocality are established.展开更多
We propose a scheme to characterize the non-Markovian dynamics and quantify the non-Markovianity via the non-classicality measured by the negativity of quantumness. By considering a qubit in contact with a critical Is...We propose a scheme to characterize the non-Markovian dynamics and quantify the non-Markovianity via the non-classicality measured by the negativity of quantumness. By considering a qubit in contact with a critical Ising spin bath and introducing an ancilla, we show that revivals of negativity of quantumness indicate the non-Markovian dynamics.Furthermore, a normalized measure of non-Markovianity based on the negativity of quantumness is introduced and the influences of bath criticality, bath temperature and bath size on the non-Markovianity are discussed. It is shown that,at the critical point, the decay of non-Markovianity versus the size of spin bath is the fastest and the non-Markovianity is exactly zero only in the thermodynamic limit. Besides, non-trivial behaviours of negativity of quantumness such as sudden change, double sudden changes and keeping constant are found for different relations between parameters of the initial state. Finally, how the non-classicality of the system is affected by a series of bang-bang pulses is also examined.展开更多
Quantum contextuality is one kind of quantumness that distinguishes quantum mechanics from classical theory.As the simplest exclusivity graph,quantum contextuality of the n-cycle graph has been reviewed,while only for...Quantum contextuality is one kind of quantumness that distinguishes quantum mechanics from classical theory.As the simplest exclusivity graph,quantum contextuality of the n-cycle graph has been reviewed,while only for odd n the quantumness can be revealed.Motivated by this,we propose the degree of non-commutativity and the degree of uncertainty to measure the quantumness in the n-cycle graphs.As desired,these two measures can detect the quantumness of any n-cycle graph when n≥4.展开更多
Crystalline undulator radiation(CUR)is emitted by charged particles channeling through a periodically bent crystal.We show that entangled high-energy photons of the order of 100 MeV can be generated from CUR and obtai...Crystalline undulator radiation(CUR)is emitted by charged particles channeling through a periodically bent crystal.We show that entangled high-energy photons of the order of 100 MeV can be generated from CUR and obtain the quantum entanglement properties of the double-photon emission of CUR with a nonperturbative quantum field theory.展开更多
The quantification of the quantumness of a quantum ensemble has theoretical and practical signif- icance in quantum information theory. We propose herein a class of measures of the quantumness of quantum ensembles usi...The quantification of the quantumness of a quantum ensemble has theoretical and practical signif- icance in quantum information theory. We propose herein a class of measures of the quantumness of quantum ensembles using the unitary similarity invariant norms of the commutators of the con- stituent density operators of an ensemble. Rigorous proof shows that they share desirable properties for a measure of quantumness, such as positivity, unitary invariance, concavity under probabilistic union, convexity under state decomposition, decreasing under coarse graining, and increasing under fine graining. Several specific examples illustrate the applications of these measures of quantumness in studying quantum information.展开更多
We study the dynamics of two-level atomic systems(qubits) subject to a double-layer environment that consists of a network of single-mode cavities coupled to a common reservoir. A general exact master equation for the...We study the dynamics of two-level atomic systems(qubits) subject to a double-layer environment that consists of a network of single-mode cavities coupled to a common reservoir. A general exact master equation for the dynamics of a qubit system can be obtained by the quantum-state-diffusion(QSD) approach, which is extended to our spin-cavity-boson model. The quantumness of the atoms comprising coherence and entanglement is investigated for various configurations of the double-layer environment.The findings indicate that parametric control is available for the preservation and generation of system-quantumness by regulating the cavity network. Moreover the underlying physics is profoundly revealed by an effective model obtained by a unitary transformation. Therefore, our work provides an interesting proposal to protect the quantumness of open systems in the framework of a double-layer environment containing bosonic modes.展开更多
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(...The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers.展开更多
Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yiel...Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.展开更多
Artificial intelligence(AI)has taken breathtaking leaps forward in recent years,evolving into a strategic technology for pioneering the future.The growing demand for computing power—especially in demanding inference ...Artificial intelligence(AI)has taken breathtaking leaps forward in recent years,evolving into a strategic technology for pioneering the future.The growing demand for computing power—especially in demanding inference tasks,exemplified by generative AI models such as ChatGPT—poses challenges for conventional electronic computing systems.Advances in photonics technology have ignited interest in investigating photonic computing as a promising AI computing modality.Through the profound fusion of AI and photonics technologies,intelligent photonics is developing as an emerging interdisciplinary field with significant potential to revolutionize practical applications.Deep learning,as a subset of AI,presents efficient avenues for optimizing photonic design,developing intelligent optical systems,and performing optical data processing and analysis.Employing AI in photonics can empower applications such as smartphone cameras,biomedical microscopy,and virtual and augmented reality displays.Conversely,leveraging photonics-based devices and systems for the physical implementation of neural networks enables high speed and low energy consumption.Applying photonics technology in AI computing is expected to have a transformative impact on diverse fields,including optical communications,automatic driving,and astronomical observation.Here,recent advances in intelligent photonics are presented from the perspective of the synergy between deep learning and metaphotonics,holography,and quantum photonics.This review also spotlights relevant applications and offers insights into challenges and prospects.展开更多
High-dimensional(HD)entanglement of photonic orbital angular momentum(OAM)is pivotal for advancing quantum communication and information processing,but its characterization remains significant challenges due to the co...High-dimensional(HD)entanglement of photonic orbital angular momentum(OAM)is pivotal for advancing quantum communication and information processing,but its characterization remains significant challenges due to the complexity of quantum state tomography and experimental limitations such as low photon counts caused by losses.Here,we propose a pre-trained physics-informed neural network(PTPINN)framework that enables efficient and rapid reconstruction of HD-OAM entangled states under low photon counts.Experimental results show that the fidelity of five-dimensional OAM entanglement reaches F=0.958±0.010 even with an exposure time as short as 50 ms.This highlights the capability of PTPINN to achieve high-precision quantum state reconstruction with limited photons,owing to its innovative designs,thus overcoming the reliance on high photon counts typical of traditional methods.Our method provides a practical and scalable solution for high-fidelity characterization of HD-OAM entanglement in environments with low photon numbers and high noise,paving the way for robust long-distance quantum information transmission.展开更多
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum...Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.展开更多
The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investiga...The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.展开更多
The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and...The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and mixed reality applications.Alongside the controlled synthesis of high-performance QDs,a reliable QD patterning technology is crucial in overcoming this challenge.Among the various methods available,photolithography-based patterning technologies show great potentials in producing ultra-fine QD patterns at micron scale.This review article presents the recent advancements in the field of QD patterning using photolithography techniques and explores their applications in micro-display technology.Firstly,we discuss QD patterning through photolithography techniques employing photoresist(PR),which falls into two categories:PRassisted photolithography and photolithography of QDPR.Subsequently,direct photolithography techniques based on photo-induced crosslinking of photosensitive groups and photo-induced ligand cleavage mechanisms are thoroughly reviewed.Meanwhile,we assess the performance of QD arrays fabricated using these photolithography techniques and their integration into QD light emitting diode display devices as well as color conversionbased micro light emitting diode display devices.Lastly,we summarize the most recent developments in this field and outline future prospects.展开更多
Quantum dots(QDs),a type of nanoscale semiconductor material with unique optical and electrical properties like adjustable emission and high photoluminescence quantum yields,are suitable for applications in optoelectr...Quantum dots(QDs),a type of nanoscale semiconductor material with unique optical and electrical properties like adjustable emission and high photoluminescence quantum yields,are suitable for applications in optoelectronics.However,QDs are typically degraded under humid and high-temperature circumstances,greatly limiting their practical value.Coating the QD surface with an inorganic silica layer is a feasible method for improving stability and endurance in a variety of applications.This paper comprehensively reviews silica coating methodologies on QD surfaces and explores their applications in optoelectronic domains.Firstly,the paper provides mainstream silica coating approaches,which can be divided into two categories:in-situ hydrolysis of silylating reagents on QD surfaces and template techniques for encapsulation QDs.Subsequently,the recent applications of the silica-coated QDs on optoelectronic fields including light-emitting diodes,solar cells,photodetectors were discussed.Finally,it reviews recent advances in silica-coated QD technology and prospects for future applications.展开更多
The planar-integrated magneto-optical trap(PIMOT)offers a promising platform for miniaturizing cold atom systems,but its performance and laser-power efficiency are limited by the typically Gaussian profile of the inpu...The planar-integrated magneto-optical trap(PIMOT)offers a promising platform for miniaturizing cold atom systems,but its performance and laser-power efficiency are limited by the typically Gaussian profile of the input laser beam.In this work,we present a simplified and cost-effective beam shaping solution to transform the Gaussian input into a flat-top intensity distribution using a compact system of four spherical lenses.The reshaped light field could potentially enhances PIMOT performance by improving the uniformity of the optical radiation pressure and increasing the trap distance from the chip surface.With this approach,we demonstrate a substantial reduction in the optical power required to trap 2.5×10^(5)^(87)Rb atoms,down to 30%compared to a standard Gaussian beam input.Our results open the door to more efficient and flexible PIMOT systems for quantum sensing,metrology,and atom-based quantum technology.展开更多
Quasi-two-dimensional(2D)perovskite embodies characteristics of both three-dimensional(3D)and 2D perovskites,achieving the superior external environment stability structure of 2D perovskites alongside the high efficie...Quasi-two-dimensional(2D)perovskite embodies characteristics of both three-dimensional(3D)and 2D perovskites,achieving the superior external environment stability structure of 2D perovskites alongside the high efficiency of 3D perovskites.This effect is realized through critical structural modifications in device fabrication.Typically,perovskites have an octahedral structure,generally ABX3,where an organic ammonium cation(A’)participates in forming the perovskite structure,with A’_(n)(n=1 or 2)sandwiched between A_(n-1)B_(n)X_(3n+1)perovskite layers.Depending on whether A’is a monovalent or divalent cation,2D perovskites are classified into Ruddlesden-Popper perovskite or Dion-Jacobson perovskite,each generating different structures.Although each structure achieves similar effects,they incorporate distinct mechanisms in their formation.And according to these different structures,various properties appear,and additive and optimizing methods to increase the efficiency of 3D perovskites also exist in 2D perovskites.In this review,scientific understanding and engineering perspectives of the quasi-2D perovskite is investigated,and the optimal structure quasi-2D and the device optimization is also discussed to provide the insight in the field.展开更多
With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ...With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.展开更多
As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by...As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by combining privacy preserving training with efficient, on device computation. This paper introduces a cutting-edge FL-edge integration framework, achieving a 10% to 15% increase in model accuracy and reducing communication costs by 25% in heterogeneous environments. Blockchain based secure aggregation ensures robust and tamper-proof model updates, while exploratory quantum AI techniques enhance computational efficiency. By addressing key challenges such as device variability and non-IID data, this work sets the stage for the next generation of adaptive, privacy-first AI systems, with applications in IoT, healthcare, and autonomous systems.展开更多
Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-po...Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.展开更多
基金Supported by the National Basic Research Program of China under Grant No 2012CB921900the National Natural Science Foundation of China under Grant Nos 11175089 and 11475089
文摘The Clauser Horne--Shimony-Holt-type noncontextuality inequality and the Svetliehny inequality are derived from the Alicki-van Ryn quantumness witness. Thus connections between quantumness and quantum contextuality, and between quantumness and genuine multipartite nonlocality are established.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11247308 and 11274274the National Natural Science Foundation of Special Theoretical Physics under Grant No.11347196+1 种基金the Natural Science Foundation of Jiangsu Province of China under Grant No.BK20130162the Fundamental Research Funds for the Central Universities under Grant No.JUSRP11405
文摘We propose a scheme to characterize the non-Markovian dynamics and quantify the non-Markovianity via the non-classicality measured by the negativity of quantumness. By considering a qubit in contact with a critical Ising spin bath and introducing an ancilla, we show that revivals of negativity of quantumness indicate the non-Markovian dynamics.Furthermore, a normalized measure of non-Markovianity based on the negativity of quantumness is introduced and the influences of bath criticality, bath temperature and bath size on the non-Markovianity are discussed. It is shown that,at the critical point, the decay of non-Markovianity versus the size of spin bath is the fastest and the non-Markovianity is exactly zero only in the thermodynamic limit. Besides, non-trivial behaviours of negativity of quantumness such as sudden change, double sudden changes and keeping constant are found for different relations between parameters of the initial state. Finally, how the non-classicality of the system is affected by a series of bang-bang pulses is also examined.
基金Supported by the Nankai Zhide Foundation,the National Science Foundation for Post-doctoral Scientists of China under Grant No 2018M631726the National Natural Science Foundation of China under Grant No 11875167the Fundamental Research Funds for the Central Universities under Grant No 63191507
文摘Quantum contextuality is one kind of quantumness that distinguishes quantum mechanics from classical theory.As the simplest exclusivity graph,quantum contextuality of the n-cycle graph has been reviewed,while only for odd n the quantumness can be revealed.Motivated by this,we propose the degree of non-commutativity and the degree of uncertainty to measure the quantumness in the n-cycle graphs.As desired,these two measures can detect the quantumness of any n-cycle graph when n≥4.
基金National Natural Science Foundation of China(12174009,11974031,12174011,12234002,92250303)Innovation Program for Quantum Science and Technology(2021ZD0301702)+2 种基金Beijing Natural Science Foundation(Z220008)Natural Science Foundation of Jiangsu Province(BK20232002)National Key Research and Development Program of China(2023YFA1406801).
文摘Crystalline undulator radiation(CUR)is emitted by charged particles channeling through a periodically bent crystal.We show that entangled high-energy photons of the order of 100 MeV can be generated from CUR and obtain the quantum entanglement properties of the double-photon emission of CUR with a nonperturbative quantum field theory.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos. 11371005 and 11475054 and the Hebei Natural Science Foundation under Grant Nos. A2016205145 and A2018205125.
文摘The quantification of the quantumness of a quantum ensemble has theoretical and practical signif- icance in quantum information theory. We propose herein a class of measures of the quantumness of quantum ensembles using the unitary similarity invariant norms of the commutators of the con- stituent density operators of an ensemble. Rigorous proof shows that they share desirable properties for a measure of quantumness, such as positivity, unitary invariance, concavity under probabilistic union, convexity under state decomposition, decreasing under coarse graining, and increasing under fine graining. Several specific examples illustrate the applications of these measures of quantumness in studying quantum information.
基金supported by the National Natural Science Foundation of China(Grant Nos.11575071,11974311,and U1801661)Zhejiang Provincial Natural Science Foundation of China(Grant No.LD18A040001)the Fundamental Research Funds for the Central Universities。
文摘We study the dynamics of two-level atomic systems(qubits) subject to a double-layer environment that consists of a network of single-mode cavities coupled to a common reservoir. A general exact master equation for the dynamics of a qubit system can be obtained by the quantum-state-diffusion(QSD) approach, which is extended to our spin-cavity-boson model. The quantumness of the atoms comprising coherence and entanglement is investigated for various configurations of the double-layer environment.The findings indicate that parametric control is available for the preservation and generation of system-quantumness by regulating the cavity network. Moreover the underlying physics is profoundly revealed by an effective model obtained by a unitary transformation. Therefore, our work provides an interesting proposal to protect the quantumness of open systems in the framework of a double-layer environment containing bosonic modes.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.RS-2022–00165798)Anhui Natural Science Foundation(No.2308085MF211)The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under Grant Number(R.G.P.2/491/45).
文摘The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers.
文摘Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.
基金supported by the National Natural Science Foundation of China(62035003 and 62235009).
文摘Artificial intelligence(AI)has taken breathtaking leaps forward in recent years,evolving into a strategic technology for pioneering the future.The growing demand for computing power—especially in demanding inference tasks,exemplified by generative AI models such as ChatGPT—poses challenges for conventional electronic computing systems.Advances in photonics technology have ignited interest in investigating photonic computing as a promising AI computing modality.Through the profound fusion of AI and photonics technologies,intelligent photonics is developing as an emerging interdisciplinary field with significant potential to revolutionize practical applications.Deep learning,as a subset of AI,presents efficient avenues for optimizing photonic design,developing intelligent optical systems,and performing optical data processing and analysis.Employing AI in photonics can empower applications such as smartphone cameras,biomedical microscopy,and virtual and augmented reality displays.Conversely,leveraging photonics-based devices and systems for the physical implementation of neural networks enables high speed and low energy consumption.Applying photonics technology in AI computing is expected to have a transformative impact on diverse fields,including optical communications,automatic driving,and astronomical observation.Here,recent advances in intelligent photonics are presented from the perspective of the synergy between deep learning and metaphotonics,holography,and quantum photonics.This review also spotlights relevant applications and offers insights into challenges and prospects.
基金supported by the National Natural Science Foundation of China(12234009,12474328,12074196,11922406,and 12074197)。
文摘High-dimensional(HD)entanglement of photonic orbital angular momentum(OAM)is pivotal for advancing quantum communication and information processing,but its characterization remains significant challenges due to the complexity of quantum state tomography and experimental limitations such as low photon counts caused by losses.Here,we propose a pre-trained physics-informed neural network(PTPINN)framework that enables efficient and rapid reconstruction of HD-OAM entangled states under low photon counts.Experimental results show that the fidelity of five-dimensional OAM entanglement reaches F=0.958±0.010 even with an exposure time as short as 50 ms.This highlights the capability of PTPINN to achieve high-precision quantum state reconstruction with limited photons,owing to its innovative designs,thus overcoming the reliance on high photon counts typical of traditional methods.Our method provides a practical and scalable solution for high-fidelity characterization of HD-OAM entanglement in environments with low photon numbers and high noise,paving the way for robust long-distance quantum information transmission.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No. ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No. 2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No. KJ2020A0301)。
文摘Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.
基金support from the National Key Research and Development Program of China(2024YFA1207700)National Natural Science Foundation of China(52072141,52102170).
文摘The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.
基金supported by the National Natural Science Foundation of China(62374142,12175189 and 11904302)External Cooperation Program of Fujian(2022I0004)+1 种基金Fundamental Research Funds for the Central Universities(20720190005 and 20720220085)Major Science and Technology Project of Xiamen in China(3502Z20191015).
文摘The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and mixed reality applications.Alongside the controlled synthesis of high-performance QDs,a reliable QD patterning technology is crucial in overcoming this challenge.Among the various methods available,photolithography-based patterning technologies show great potentials in producing ultra-fine QD patterns at micron scale.This review article presents the recent advancements in the field of QD patterning using photolithography techniques and explores their applications in micro-display technology.Firstly,we discuss QD patterning through photolithography techniques employing photoresist(PR),which falls into two categories:PRassisted photolithography and photolithography of QDPR.Subsequently,direct photolithography techniques based on photo-induced crosslinking of photosensitive groups and photo-induced ligand cleavage mechanisms are thoroughly reviewed.Meanwhile,we assess the performance of QD arrays fabricated using these photolithography techniques and their integration into QD light emitting diode display devices as well as color conversionbased micro light emitting diode display devices.Lastly,we summarize the most recent developments in this field and outline future prospects.
基金supported by the National Natural Science Foundation of China(Nos.62374142 and 22005255)Fundamental Research Funds for the Central Universities(Nos.20720220085 and 20720240064)+2 种基金External Cooperation Program of Fujian(No.2022I0004)Major Science and Technology Project of Xiamen in China(No.3502Z20191015)Xiamen Natural Science Foundation Youth Project(No.3502Z202471002)。
文摘Quantum dots(QDs),a type of nanoscale semiconductor material with unique optical and electrical properties like adjustable emission and high photoluminescence quantum yields,are suitable for applications in optoelectronics.However,QDs are typically degraded under humid and high-temperature circumstances,greatly limiting their practical value.Coating the QD surface with an inorganic silica layer is a feasible method for improving stability and endurance in a variety of applications.This paper comprehensively reviews silica coating methodologies on QD surfaces and explores their applications in optoelectronic domains.Firstly,the paper provides mainstream silica coating approaches,which can be divided into two categories:in-situ hydrolysis of silylating reagents on QD surfaces and template techniques for encapsulation QDs.Subsequently,the recent applications of the silica-coated QDs on optoelectronic fields including light-emitting diodes,solar cells,photodetectors were discussed.Finally,it reviews recent advances in silica-coated QD technology and prospects for future applications.
基金supported by the National Key R&D Program(Grant Nos.2021YFA1402004 and 2021YFF0603701)the National Natural Science Foundation of China(Grants Nos.12134014,U21A20433,U21A6006,and 92265108)+1 种基金supported by the Fundamental Research Funds for the Central UniversitiesUSTC Research Funds of the Double First-Class Initiative。
文摘The planar-integrated magneto-optical trap(PIMOT)offers a promising platform for miniaturizing cold atom systems,but its performance and laser-power efficiency are limited by the typically Gaussian profile of the input laser beam.In this work,we present a simplified and cost-effective beam shaping solution to transform the Gaussian input into a flat-top intensity distribution using a compact system of four spherical lenses.The reshaped light field could potentially enhances PIMOT performance by improving the uniformity of the optical radiation pressure and increasing the trap distance from the chip surface.With this approach,we demonstrate a substantial reduction in the optical power required to trap 2.5×10^(5)^(87)Rb atoms,down to 30%compared to a standard Gaussian beam input.Our results open the door to more efficient and flexible PIMOT systems for quantum sensing,metrology,and atom-based quantum technology.
基金the Research Grant of Kwangwoon University in 2024 and the National Research Foundation of Korea(RS-2023-00236572 and RS-2023-00212110)funded by the Korea government(MSIT)the project for Collabo R&D between Industry,University,and Research Institute(RS-2024-00414524)funded by Korea Ministry of SMEs and Startups.
文摘Quasi-two-dimensional(2D)perovskite embodies characteristics of both three-dimensional(3D)and 2D perovskites,achieving the superior external environment stability structure of 2D perovskites alongside the high efficiency of 3D perovskites.This effect is realized through critical structural modifications in device fabrication.Typically,perovskites have an octahedral structure,generally ABX3,where an organic ammonium cation(A’)participates in forming the perovskite structure,with A’_(n)(n=1 or 2)sandwiched between A_(n-1)B_(n)X_(3n+1)perovskite layers.Depending on whether A’is a monovalent or divalent cation,2D perovskites are classified into Ruddlesden-Popper perovskite or Dion-Jacobson perovskite,each generating different structures.Although each structure achieves similar effects,they incorporate distinct mechanisms in their formation.And according to these different structures,various properties appear,and additive and optimizing methods to increase the efficiency of 3D perovskites also exist in 2D perovskites.In this review,scientific understanding and engineering perspectives of the quasi-2D perovskite is investigated,and the optimal structure quasi-2D and the device optimization is also discussed to provide the insight in the field.
基金financial support from the Doctoral Foundation of Henan University of Engineering(No.D2022025)National Natural Science Foundation of China(No.U2004162)+1 种基金National Natural Science Foundation of China(No.52302138)Key Project for Science and Technology Development of Henan Province(No.232102320221)。
文摘With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.
文摘As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by combining privacy preserving training with efficient, on device computation. This paper introduces a cutting-edge FL-edge integration framework, achieving a 10% to 15% increase in model accuracy and reducing communication costs by 25% in heterogeneous environments. Blockchain based secure aggregation ensures robust and tamper-proof model updates, while exploratory quantum AI techniques enhance computational efficiency. By addressing key challenges such as device variability and non-IID data, this work sets the stage for the next generation of adaptive, privacy-first AI systems, with applications in IoT, healthcare, and autonomous systems.
基金supported by the National Natural Science Foundation of China (No. 62204079)the Science and Technology Development Project of Henan Province (Nos.202300410048, 202300410057)+2 种基金the China Postdoctoral Science Foundation (No. 2022M711037)the Intelligence Introduction Plan of Henan Province in 2021 (No. CXJD2021008)Henan University Fund。
文摘Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.