期刊文献+
共找到9,896篇文章
< 1 2 250 >
每页显示 20 50 100
Exploring Nanoscale Perovskite Materials for Next‑Generation Photodetectors:A Comprehensive Review and Future Directions 被引量:2
1
作者 Xin Li Sikandar Aftab +4 位作者 Maria Mukhtar Fahmid Kabir Muhammad Farooq Khan Hosameldin Helmy Hegazy Erdi Akman 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期46-108,共63页
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(... The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers. 展开更多
关键词 Nanoscale perovskites PHOTODETECTORS NANOSHEETS NANORODS NANOWIRES Quantum dots NANOCRYSTALS
在线阅读 下载PDF
Efficient Perovskite Quantum Dots Light-emitting Diodes:Challenges and Optimization 被引量:2
2
作者 LI Mengjiao WANG Ye +1 位作者 WANG Yakun LIAO Liangsheng 《发光学报》 北大核心 2025年第3期452-461,共10页
Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yiel... Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs. 展开更多
关键词 perovskite quantum dot light-emitting diodes(Pe-QLEDs) PHOTOLUMINESCENCE DEFECTS ion migration
在线阅读 下载PDF
USTER^(■) QUANTUM 3型电子清纱器的 实际应用及要点分析
3
作者 兰小鹏 刘倩 +2 位作者 王友明 陈培培 魏文丽 《纺织导报》 2025年第1期41-44,共4页
USTER^(■)QUANTUM 3型电子清纱器纱体功能有助于清纱曲线的设置,应用好USTER^(■)QUANTUM 3型电清要熟悉其特点。文章介绍了USTER^(■)QUANTUM 3型电子清纱器的纱体功能、利用清纱通道清除周期性纱疵以及非周期性密集纱疵的生产实践、... USTER^(■)QUANTUM 3型电子清纱器纱体功能有助于清纱曲线的设置,应用好USTER^(■)QUANTUM 3型电清要熟悉其特点。文章介绍了USTER^(■)QUANTUM 3型电子清纱器的纱体功能、利用清纱通道清除周期性纱疵以及非周期性密集纱疵的生产实践、利用电清统计功能指导生产管理的实践,并通过对纱体变异的分析,研究改善纱线质量、提升纱线品质的措施。 展开更多
关键词 USTER^(■)QUANTUM 3型电子清纱器 纱体 清纱曲线 纱疵
在线阅读 下载PDF
Correlation-Pattern-Based Orbital Angular Momentum Entanglement Measurement Through Neural Networks 被引量:2
4
作者 Jiaxian Zhao Zhifeng Liu +2 位作者 Chenghou Tu Yongnan Li Hui-Tian Wang 《Chinese Physics Letters》 2025年第3期23-28,共6页
High-dimensional(HD)entanglement of photonic orbital angular momentum(OAM)is pivotal for advancing quantum communication and information processing,but its characterization remains significant challenges due to the co... High-dimensional(HD)entanglement of photonic orbital angular momentum(OAM)is pivotal for advancing quantum communication and information processing,but its characterization remains significant challenges due to the complexity of quantum state tomography and experimental limitations such as low photon counts caused by losses.Here,we propose a pre-trained physics-informed neural network(PTPINN)framework that enables efficient and rapid reconstruction of HD-OAM entangled states under low photon counts.Experimental results show that the fidelity of five-dimensional OAM entanglement reaches F=0.958±0.010 even with an exposure time as short as 50 ms.This highlights the capability of PTPINN to achieve high-precision quantum state reconstruction with limited photons,owing to its innovative designs,thus overcoming the reliance on high photon counts typical of traditional methods.Our method provides a practical and scalable solution for high-fidelity characterization of HD-OAM entanglement in environments with low photon numbers and high noise,paving the way for robust long-distance quantum information transmission. 展开更多
关键词 QUANTUM MOMENTUM enable
原文传递
Multi-hop quantum teleportation based on HSES via GHZ-like states 被引量:1
5
作者 She-Xiang Jiang Xiao-Long Wei +1 位作者 Jin-Huan Li Shuai-Shuai Li 《Chinese Physics B》 2025年第1期60-70,共11页
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum... Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol. 展开更多
关键词 multi-hop quantum teleportation GHZ-like state hierarchical simultaneous entanglement swapping IBM Quantum Experiment platform quantum state tomography
原文传递
Size matters:quantum confinement-driven dynamics in CsPbI_(3)quantum dot light-emitting diodes 被引量:1
6
作者 Shuo Li Wenxu Yin +1 位作者 Weitao Zheng Xiaoyu Zhang 《Journal of Semiconductors》 2025年第4期55-61,共7页
The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investiga... The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices. 展开更多
关键词 quantum confinement effect CsPbI_(3) quantum dot light-emitting diode
在线阅读 下载PDF
Carbon-based quantum dots/nanodots materials for potassium ion storage 被引量:1
7
作者 Zhanheng Yan Weiqing Su +6 位作者 Weiwei Xu Qianhui Mao Lisha Xue Huanxin Li Wuhua Liu Xiu Li Qiuhui Zhang 《Chinese Chemical Letters》 2025年第4期83-95,共13页
With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ... With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers. 展开更多
关键词 Quantum dots NANODOTS Potassium ion battery ANODE Composite material
原文传递
Intelligent Photonics:A Disruptive Technology to Shape the Present and Redefine the Future 被引量:1
8
作者 Danlin Xu Yuchen Ma +1 位作者 Guofan Jin Liangcai Cao 《Engineering》 2025年第3期186-213,共28页
Artificial intelligence(AI)has taken breathtaking leaps forward in recent years,evolving into a strategic technology for pioneering the future.The growing demand for computing power—especially in demanding inference ... Artificial intelligence(AI)has taken breathtaking leaps forward in recent years,evolving into a strategic technology for pioneering the future.The growing demand for computing power—especially in demanding inference tasks,exemplified by generative AI models such as ChatGPT—poses challenges for conventional electronic computing systems.Advances in photonics technology have ignited interest in investigating photonic computing as a promising AI computing modality.Through the profound fusion of AI and photonics technologies,intelligent photonics is developing as an emerging interdisciplinary field with significant potential to revolutionize practical applications.Deep learning,as a subset of AI,presents efficient avenues for optimizing photonic design,developing intelligent optical systems,and performing optical data processing and analysis.Employing AI in photonics can empower applications such as smartphone cameras,biomedical microscopy,and virtual and augmented reality displays.Conversely,leveraging photonics-based devices and systems for the physical implementation of neural networks enables high speed and low energy consumption.Applying photonics technology in AI computing is expected to have a transformative impact on diverse fields,including optical communications,automatic driving,and astronomical observation.Here,recent advances in intelligent photonics are presented from the perspective of the synergy between deep learning and metaphotonics,holography,and quantum photonics.This review also spotlights relevant applications and offers insights into challenges and prospects. 展开更多
关键词 Artificial intelligence Optical neural network Deep learning Metaphotonics HOLOGRAPHY Quantum photonics
在线阅读 下载PDF
Beyond the Cloud: Federated Learning and Edge AI for the Next Decade 被引量:1
9
作者 Sooraj George Thomas Praveen Kumar Myakala 《Journal of Computer and Communications》 2025年第2期37-50,共14页
As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by... As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by combining privacy preserving training with efficient, on device computation. This paper introduces a cutting-edge FL-edge integration framework, achieving a 10% to 15% increase in model accuracy and reducing communication costs by 25% in heterogeneous environments. Blockchain based secure aggregation ensures robust and tamper-proof model updates, while exploratory quantum AI techniques enhance computational efficiency. By addressing key challenges such as device variability and non-IID data, this work sets the stage for the next generation of adaptive, privacy-first AI systems, with applications in IoT, healthcare, and autonomous systems. 展开更多
关键词 Federated Learning Edge AI Decentralized Computing Privacy-Preserving AI Blockchain Quantum AI
在线阅读 下载PDF
Charge carrier management via semiconducting matrix for efficient self-powered quantum dot infrared photodetectors 被引量:1
10
作者 Jianfeng Ding Xinying Liu +3 位作者 Yueyue Gao Chen Dong Gentian Yue Furui Tan 《Journal of Semiconductors》 2025年第3期74-81,共8页
Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-po... Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices. 展开更多
关键词 quantum dot semiconducting matrix ligand exchange self-powered photodetectors
在线阅读 下载PDF
High peak power mini-array quantum cascade lasers operating in pulsed mode 被引量:1
11
作者 Yuhang Zhang Yupei Wang +6 位作者 Xiaoyue Luo Chenhao Qian Yang Cheng Wu Zhao Fangyuan Sun Jun Wang Zheng-Ming Sun 《Chinese Physics B》 2025年第1期339-342,共4页
Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order mo... Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes.A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs.The active region is etched to form a multi-emitter and the channels are filled with In P:Fe,which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency.A device withλ~4.8μm,a peak output power of 122 W at 1.2%duty cycle with a pulse of 1.5μs is obtained in room temperature,with far-field single-lobed distribution.This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions,promotes the application of the mid-infrared laser operating in pulsed mode in th e field of standoff photoacoustic chemical detection,space optical communication,and so on. 展开更多
关键词 quantum cascade laser mini-array thermal management
原文传递
Synthesis of p-type PbS quantum dot ink via inorganic ligand exchange in solution for high-efficiency and stable solar cells 被引量:1
12
作者 Napasuda Wichaiyo Yuyao Wei +9 位作者 Chao Ding Guozheng Shi Witoon Yindeesuk Liang Wang Huān Bì Jiaqi Liu Shuzi Hayase Yusheng Li Yongge Yang Qing Shen 《Journal of Semiconductors》 2025年第4期63-70,共8页
Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachm... Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices. 展开更多
关键词 quantum dot solar cells hole transport layer PBS p-type ink inorganic ligands
在线阅读 下载PDF
An Analysis about the Origin and Essence of Mass Based on Particle-Propagating Model and Wave Equations of Scalar Waves 被引量:1
13
作者 Jiang Jian-zhong Chen Xi-qi 《Journal of Environmental Science and Engineering(B)》 2025年第2期65-75,共11页
If the singularity of the cosmic Big Bang is taken as the origin of the reference coordinate system,the surrounding vacuum in the initial moments of it would exhibit radially-outward right-handed spiral motion at ligh... If the singularity of the cosmic Big Bang is taken as the origin of the reference coordinate system,the surrounding vacuum in the initial moments of it would exhibit radially-outward right-handed spiral motion at light speed.Based on this spatial motion hypothesis,we derive a unified field equation and a set of Maxwell’s equations for vacuum SWs(Scalar Waves)generating a huge spiral force field that drives the energy to spiral inwardly and distort,leading to the formation of mass.Furthermore,they also uncover that mass is fundamentally an ultimate expression of energy,manifesting as the result of spiral motion of space at light speed.And then,we indirectly validate the theory that coherent light waves’collision generate SWs and subsequently mass through the experiment verifying the Breit-Wheeler process.The establishment of our theory offers a new analytical tool for the exploration of mass origin,the cosmic Big Bang,unified field theories. 展开更多
关键词 QED(Quantum Electrodynamics) SW mass origin unified field theories
在线阅读 下载PDF
Effects of plasma screening on the^(1)P^(o)(n=3,n=4)resonance states of H-and He using the stabilization method
14
作者 仲子鑫 吕柄宽 +2 位作者 姜子实 KAR Sabyasachi HO Yew Kam 《黑龙江大学自然科学学报》 2025年第4期469-487,共19页
The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wav... The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters. 展开更多
关键词 quantum plasma Debye plasma P-wave resonance states correlated exponential wave functions stabilization method
在线阅读 下载PDF
Cloning scheme for multipartite entangled pure states via photonic quantum walk
15
作者 WANG Guocui LIN Zhi +2 位作者 LI Xikun YANG Qing YANG Ming 《量子电子学报》 北大核心 2025年第2期206-216,共11页
The no-cloning theorem has sparked considerable interest in achieving high-fidelity approximate quantum cloning.Most of the previous studies mainly focused on the cloning of single particle states,and cloning schemes ... The no-cloning theorem has sparked considerable interest in achieving high-fidelity approximate quantum cloning.Most of the previous studies mainly focused on the cloning of single particle states,and cloning schemes used there are incapable of cloning quantum entangled states in multipartite systems.Few schemes were proposed for cloning multiparticle states,which consume more entanglement resources with loss of qubits,and the fidelity of the cloned state is relatively low.In this paper,cloning schemes for bipartite and tripartite entangled states based on photonic quantum walk and entanglement swapping are proposed.The results show that according to the proposed schemes,two high-fidelity(up to 0.75)cloned states can be obtained with less quantum resource consumption.Because of the simple cloning steps,few quantum resources and high fidelity,these schemes are both efficient and feasible.Moreover,this cloning machine eliminates the need for tracing out cloning machine,thereby minimizing resource waste. 展开更多
关键词 quantum optics entanglement cloning photonic quantum walk multipartite entanglement
在线阅读 下载PDF
PBW-bases of split affineı-quantum groups
16
作者 LU Ming YANG Rui-Qi 《四川大学学报(自然科学版)》 北大核心 2025年第5期1085-1094,共10页
ı-quantum groups,arising from quantum symmetric pairs,are coideal subalgebras of quantum groups.ı-quantum groups are a vast generalization of quantum groups,as quantum groups can be viewed asıquantum groups of diagona... ı-quantum groups,arising from quantum symmetric pairs,are coideal subalgebras of quantum groups.ı-quantum groups are a vast generalization of quantum groups,as quantum groups can be viewed asıquantum groups of diagonal type.Recently,the braid group symmetries and Drinfeld new presentations of quantum groups have been generalized to affineı-quantum groups.In this paper,we construct PBW type bases for splitı-quantum groups of type ADE,based on their braid group symmetries and Drinfeld new presentations.This can be viewed as anı-analogue of the PBW-basis for affine quantum groups,and it generalizes the PBW-basis ofı-quantum groups of finite type. 展开更多
关键词 Quantum group Quantum symmetric pair PBW-base
在线阅读 下载PDF
Quantum Circuit Implementation and Resource Evaluation of Ballet‑p/k Under Grover’s Attack
17
作者 HONG Rui-Peng ZHANG Lei +3 位作者 PANG Chen-Xu LI Guo-Yuan DING Ding WANG Jian-Xin 《密码学报(中英文)》 北大核心 2025年第5期1178-1194,共17页
The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for thre... The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for three versions of the Ballet family block ciphers.The Ballet‑p/k includes a modular-addition operation uncommon in lightweight block ciphers.Quantum ripple-carry adder is implemented for both“32+32”and“64+64”scale to support this operation.Subsequently,qubits,quantum gates count,and quantum circuit depth of three versions of Ballet algorithm are systematically evaluated under quantum computing model,and key recovery attack circuits are constructed based on Grover’s algorithm against each version.The comprehensive analysis shows:Ballet-128/128 fails to NIST Level 1 security,while when the resource accounting is restricted to the Clifford gates and T gates set for the Ballet-128/256 and Ballet-256/256 quantum circuits,the design attains Level 3. 展开更多
关键词 Grover’s algorithm quantum circuit Ballet family block ciphers quantum ripple-carry adder
在线阅读 下载PDF
Structural design of a wide-ridge mid-wave infrared quantum cascade laser based on a supersymmetric waveguide
18
作者 DU Shu-Hao ZHENG Xian-Tong +7 位作者 JIA Han CUI Jin-Tao ZHANG Shi-Ya LIU Yuan FENG Yu-Lin ZHANG Chun-Qian LIU Ming ZHANG Dong-Liang 《红外与毫米波学报》 北大核心 2025年第3期452-458,共7页
In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particul... In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particularly pronounced with an increase in ridge width,resulting in multimode problems.To tackle this,an innovative multi ridge waveguide structure based on the principle of supersymmetry(SUSY)was proposed.This structure comprises a wider main waveguide in the center and two narrower auxiliary waveguides on either side.The high-order modes of the main waveguide are coupled with the modes of the auxiliary waveguides through mode-matching design,and the optical loss of the auxiliary waveguides suppresses these modes,thereby achieving fundamental mode lasing of the wider main waveguide.This paper employs the finite difference eigenmode(FDE)method to perform detailed structural modeling and simulation optimization of the 4.6μm wavelength quantum cascade laser,successfully achieving a single transverse mode QCL with a ridge width of 10μm.In comparison to the traditional single-mode QCL(with a ridge width of about 5μm),the MRW structure has the potential to increase the gain area of the laser by 100%.This offers a novel design concept and methodology for enhancing the single-mode luminous power of mid-infrared quantum cascade lasers,which is of considerable significance. 展开更多
关键词 quantum cascade laser mode competition SUPERSYMMETRY MID-INFRARED auxiliary waveguides
在线阅读 下载PDF
A HgTe/ZnO quantum dots vertically stacked heterojunction low dark current photodetector
19
作者 HUANG Xin-Ning JIANG Teng-Teng +15 位作者 DI Yun-Xiang XIE Mao-Bin GUO Tian-Le LIU Jing-Jing WU Bin-Min SHI Jing-Mei QIN Qiang DENG Gong-Rong CHEN Yan LIN Tie SHENHong MENG Xiang-Jian WANG Xu-Dong CHU Jun-Hao GE Jun WANG Jian-Lu 《红外与毫米波学报》 北大核心 2025年第1期33-39,共7页
Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective al... Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective alternative to traditional infrared detector technology.Recently,thanks to the solution processing properties of quantum dots and their ability to integrate with silicon-based readout circuits on a single chip,infrared detectors based on HgTe CQDs have shown great application prospects.However,facing the challenges of vertically stacked photovoltaic devices,such as barrier layer matching and film non-uniformity,most devices integrated with readout circuits still use a planar structure,which limits the efficiency of light absorption and the effective separation and collection of photo-generated carriers.Here,by synthesizing high-quality HgTe CQDs and precisely controlling the interface quality,we have successfully fabricated a photovoltaic detector based on HgTe and ZnO QDs.At a working temperature of 80 K,this detector achieved a low dark current of 5.23×10^(-9)A cm^(-2),a high rectification ratio,and satisfactory detection sensitivity.This work paves a new way for the vertical integration of HgTe CQDs on silicon-based readout circuits,demonstrating their great potential in the field of high-performance infrared detection. 展开更多
关键词 colloidal quantum dots PHOTODETECTOR barrier layer HETEROJUNCTION
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部