We study the dynamics of two-level atomic systems(qubits) subject to a double-layer environment that consists of a network of single-mode cavities coupled to a common reservoir. A general exact master equation for the...We study the dynamics of two-level atomic systems(qubits) subject to a double-layer environment that consists of a network of single-mode cavities coupled to a common reservoir. A general exact master equation for the dynamics of a qubit system can be obtained by the quantum-state-diffusion(QSD) approach, which is extended to our spin-cavity-boson model. The quantumness of the atoms comprising coherence and entanglement is investigated for various configurations of the double-layer environment.The findings indicate that parametric control is available for the preservation and generation of system-quantumness by regulating the cavity network. Moreover the underlying physics is profoundly revealed by an effective model obtained by a unitary transformation. Therefore, our work provides an interesting proposal to protect the quantumness of open systems in the framework of a double-layer environment containing bosonic modes.展开更多
A quantum memory or information processing device is subject to the disturbance from its surrounding environment or the inevitable leakage due to its contact with other systems. To tackle these problems, several contr...A quantum memory or information processing device is subject to the disturbance from its surrounding environment or the inevitable leakage due to its contact with other systems. To tackle these problems, several control protocols have been proposed for quantum memory or storage. Among them, the fast signal control or dynamical decoupling based on external pulse sequences provides a prevailing strategy aimed at suppressing decoherence and preventing the target systems from the leakage or diffusion process. In this paper, we review the applications of this protocol in protecting quantum memory under the non-Markovian dissipative noise and maintaining systems on finite speed adiabatic passages without leakage therefrom. We analyze perturbative and nonperturbative dynamical equations for leakage and control, including second-order master equation, quantum-state-diffusion equation, and one-component master equation derived from Feshbach PQ-partitioning technique. It turns out that the quality of fast-modulated signal control is insensitive to configurations of the applied pulse sequences. Specifically, decoherence and leakage will be greatly suppressed as long as the control sequence is able to effectively shift the system beyond the bath cutoff frequency, almost independent of the details of the control sequences that could be ideal pulses, regular rectangular pulses, random pulses and even noisy pulses.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11575071,11974311,and U1801661)Zhejiang Provincial Natural Science Foundation of China(Grant No.LD18A040001)the Fundamental Research Funds for the Central Universities。
文摘We study the dynamics of two-level atomic systems(qubits) subject to a double-layer environment that consists of a network of single-mode cavities coupled to a common reservoir. A general exact master equation for the dynamics of a qubit system can be obtained by the quantum-state-diffusion(QSD) approach, which is extended to our spin-cavity-boson model. The quantumness of the atoms comprising coherence and entanglement is investigated for various configurations of the double-layer environment.The findings indicate that parametric control is available for the preservation and generation of system-quantumness by regulating the cavity network. Moreover the underlying physics is profoundly revealed by an effective model obtained by a unitary transformation. Therefore, our work provides an interesting proposal to protect the quantumness of open systems in the framework of a double-layer environment containing bosonic modes.
基金supported by the Basque Government (IT472-10)the Spanish MICINN (FIS2012-36673-C03-03)+2 种基金the Basque Country University UFI (11/55-01-2013)the National Natural Science Foundation of China (11175110)the Science and Technology Development Program of Jilin Province of China (20150519021JH)
文摘A quantum memory or information processing device is subject to the disturbance from its surrounding environment or the inevitable leakage due to its contact with other systems. To tackle these problems, several control protocols have been proposed for quantum memory or storage. Among them, the fast signal control or dynamical decoupling based on external pulse sequences provides a prevailing strategy aimed at suppressing decoherence and preventing the target systems from the leakage or diffusion process. In this paper, we review the applications of this protocol in protecting quantum memory under the non-Markovian dissipative noise and maintaining systems on finite speed adiabatic passages without leakage therefrom. We analyze perturbative and nonperturbative dynamical equations for leakage and control, including second-order master equation, quantum-state-diffusion equation, and one-component master equation derived from Feshbach PQ-partitioning technique. It turns out that the quality of fast-modulated signal control is insensitive to configurations of the applied pulse sequences. Specifically, decoherence and leakage will be greatly suppressed as long as the control sequence is able to effectively shift the system beyond the bath cutoff frequency, almost independent of the details of the control sequences that could be ideal pulses, regular rectangular pulses, random pulses and even noisy pulses.