We demonstrate an indoor 5 m free-space optical wireless coherent communication in mid L-band(1606.7 nm)by employing a tunable self-seeded InAs/InGaAlAs/InP quantum-dash(Qdash) laser as a subcarrier generator for ...We demonstrate an indoor 5 m free-space optical wireless coherent communication in mid L-band(1606.7 nm)by employing a tunable self-seeded InAs/InGaAlAs/InP quantum-dash(Qdash) laser as a subcarrier generator for 128 Gb/s dual-polarization quadrature phase shift keying(DP-QPSK) modulation signal. The bare Qdash laser diode displays ~6 nm self-locked Fabry-Perot mode tunability with ~30 dB side mode suppression ratio(SMSR) and ~10 dBm mode power across the tuning range, thus encompassing ~10 modes with an achievable capacity of 1.28 Tb/s(10 × 128 Gb∕s) and potentially qualifying the source requirements for future access networks.展开更多
Differential quadrature phase shift keying (DQPSK) modulation is attractive in high-speed optical communications because of its resistance to fiber non-linearities and more efficient use of fiber bandwidth compared ...Differential quadrature phase shift keying (DQPSK) modulation is attractive in high-speed optical communications because of its resistance to fiber non-linearities and more efficient use of fiber bandwidth compared to conventional intensity modulation schemes. Because of its wavelength conversion ability and phase preservation, semiconductor optical amplifier (SOA) four- wave mixing (FWM) has attracted much attention. We experimentally study wavelength conversion of 40 Gbit/s (20 Gbaud) non-return-to-zero (NRZ)-DQPSK data using FWM in a quantum dash SOA with 20 dB gain and 5 dBm output saturation power. Q factor improvement and eye diagram reshaping is shown for up to 3 nm pump-probe detuning and is superior to that reported for a higher gain bulk SOA.展开更多
基金supported in part by King Fahd University of Petroleum and Minerals through the KAUST004 grantin part by King Saud University,Deanship of Scientific Research through the RG-1438-092 grantin part by KACST-TIC in SSL
文摘We demonstrate an indoor 5 m free-space optical wireless coherent communication in mid L-band(1606.7 nm)by employing a tunable self-seeded InAs/InGaAlAs/InP quantum-dash(Qdash) laser as a subcarrier generator for 128 Gb/s dual-polarization quadrature phase shift keying(DP-QPSK) modulation signal. The bare Qdash laser diode displays ~6 nm self-locked Fabry-Perot mode tunability with ~30 dB side mode suppression ratio(SMSR) and ~10 dBm mode power across the tuning range, thus encompassing ~10 modes with an achievable capacity of 1.28 Tb/s(10 × 128 Gb∕s) and potentially qualifying the source requirements for future access networks.
基金Acknowledgements This research was supported by Science Foundation Ireland Investigator Grant 09/IN.1/I2641.
文摘Differential quadrature phase shift keying (DQPSK) modulation is attractive in high-speed optical communications because of its resistance to fiber non-linearities and more efficient use of fiber bandwidth compared to conventional intensity modulation schemes. Because of its wavelength conversion ability and phase preservation, semiconductor optical amplifier (SOA) four- wave mixing (FWM) has attracted much attention. We experimentally study wavelength conversion of 40 Gbit/s (20 Gbaud) non-return-to-zero (NRZ)-DQPSK data using FWM in a quantum dash SOA with 20 dB gain and 5 dBm output saturation power. Q factor improvement and eye diagram reshaping is shown for up to 3 nm pump-probe detuning and is superior to that reported for a higher gain bulk SOA.