We study the kick dynamics of periodically driven quantum systems,and provide a time-independent effective Hamiltonian with the analytical form to reasonably describe the effective dynamics in a long timescale.It is s...We study the kick dynamics of periodically driven quantum systems,and provide a time-independent effective Hamiltonian with the analytical form to reasonably describe the effective dynamics in a long timescale.It is shown that the effective coupling strength can be much larger than the coupling strength of the original system in some parameter regions,which stems from the zero time duration of kicks.Furthermore,different regimes can be transformed from and to each other in the same three-level system by only modulating the period of periodic kicks.In particular,the population of excited states can be selectively suppressed in periodic kicks,benefiting from the large detuning regime of the original system.Finally,some applications and physical implementation of periodic kicks are demonstrated in quantum systems.These unique features would make periodic kicks become a powerful tool for quantum state engineering.展开更多
A scheme is proposed to investigate the non-classical states generated by a quantum scissors device(QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of ...A scheme is proposed to investigate the non-classical states generated by a quantum scissors device(QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of the optomechanical system, the resulting state contains only the vacuum, single-photon and two-photon states depending upon the coupling parameter of the optomechanical system as well as the transmission coefficients of beam splitters(BSs). Especially, the output state is just a class of multicomponent cat state truncations at time t = 2π by choosing the appropriate value of coupling parameter. We discuss the success probability of such a state and the fidelity between the output state and input state via QSD. Then the linear entropy is used to investigate the entanglement between the two subsystems, finding that QSD operation can enhance their entanglement degree. Furthermore, we also derive the analytical expression of the Wigner function(WF) for the cavity mode via QSD and numerically analyze the WF distribution in phase space at time t =2π. These results show that the high non-classicality of output state can always be achieved by modulating the coupling parameter of the optomechanical system as well as the transmittance of BSs.展开更多
We propose a scheme to transmit information via the statistical distribution of excitations of a nanomechanical resonator. It employs a controllable coupling between this system and a Cooper pair box. The success prob...We propose a scheme to transmit information via the statistical distribution of excitations of a nanomechanical resonator. It employs a controllable coupling between this system and a Cooper pair box. The success probability and the fidelity are calculated and compared with those obtained in an atom-field system in different regimes. Addtionaly, the scheme can also be applied to prepare low excited Fock states.展开更多
A scheme is proposed to generate arbitrary, discrete superpostions of squeezed coherent states of the squeezed center of mass of N trapped ions along a straight line in phase space. The scheme is based on a resonant b...A scheme is proposed to generate arbitrary, discrete superpostions of squeezed coherent states of the squeezed center of mass of N trapped ions along a straight line in phase space. The scheme is based on a resonant bichromatic excitation of each trapped ion that generates displacement and squeezing in the vibrational motion conditioned to each internal state. In this paper, we also show that such a method can be used for the engineering of motional quantum states.展开更多
Counterdiabatic driving (CD) offers a fast and robust route to manipulate quantum systems, which has widespreadapplications in quantum technologies. However, for higher-dimensional complex systems, the exact CD term i...Counterdiabatic driving (CD) offers a fast and robust route to manipulate quantum systems, which has widespreadapplications in quantum technologies. However, for higher-dimensional complex systems, the exact CD term involving thespectral properties of the system is difficult to calculate and generally takes a complicated form, impeding its experimentalrealization. Recently, many approximate methods have been proposed for designing CD passages in many-body systems. Inthis topical review, we focus on the CD formalism and briefly introduce several experimental constructions and applicationsof approximate CD driving in spin-chain models with nuclear magnetic resonance (NMR) systems.展开更多
The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation,yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale ...The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation,yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale quantum(NISQ)devices due to their excessive depth and circuit complexity.We demonstrate a high-precision phase difference estimation protocol based on the Bayesian phase difference estimation algorithm and single-photon projective measurement.The iterative framework of the algorithm,combined with the independence from controlled unitary operations,inherently mitigates circuit depth and complexity limitations.Through an experimental realization on the photonic system,we demonstrate high-precision estimation of diverse phase differences,showing root-mean-square errors(RMSE)below the standard quantum limit𝒪(1/√N)and reaching the Heisenberg scaling𝒪(1/N)after a certain number of iterations.Our scheme provides a critical advantage in quantum resource-constrained scenarios,and advances practical implementations of quantum information tasks under realistic hardware constraints.展开更多
Meta-devices,known for their capability to manipulate light fields at a subwavelength scale,have gained significant traction in the realm of quantum photonics in recent years.They are being utilized in miniaturized ap...Meta-devices,known for their capability to manipulate light fields at a subwavelength scale,have gained significant traction in the realm of quantum photonics in recent years.They are being utilized in miniaturized applications such as the preparation of quantum light sources and the control and detection of quantum states.In this review,we provide a systematic explanation of the working principles and notable applications of metadevices in quantum optical information processing,while also outlining potential directions for the future development of quantum meta-devices.展开更多
Using the quantum interference of photon pairs in N-stage nonlinear interferometers(NLIs),the contour of the joint spectral function can be modified into an islands pattern.We perform two series of experiments.One is ...Using the quantum interference of photon pairs in N-stage nonlinear interferometers(NLIs),the contour of the joint spectral function can be modified into an islands pattern.We perform two series of experiments.One is that all of the nonlinear fibers in pulse pumped NLIs are identical;the other is that the lengths of N pieces of nonlinear fibers are different.We not only demonstrate how the pattern of spectral function changes with the stage number N,but also characterize how the relative intensity of island peaks varies with N.The results well agree with theoretical predictions,revealing that the NLI with lengths of N pieces of nonlinear fibers following binomial distribution can provide a better active filtering function.Our investigation shows that the active filtering effect of multi-stage NLI is a useful tool for efficiently engineering the factorable two-photon state—a desirable resource for quantum information processing.展开更多
We report the generation of polarization-entangled photon pairs in the 1550 nm band by pumping an uneven nonlinear interferometer loop with two orthogonally polarized counterpropagating pump pulses.The uneven nonlinea...We report the generation of polarization-entangled photon pairs in the 1550 nm band by pumping an uneven nonlinear interferometer loop with two orthogonally polarized counterpropagating pump pulses.The uneven nonlinear interferometer,providing a more ideal interference pattern due to the elimination of secondary maxima,consists of four pieces of dispersion-shifted fibers sandwiched with three pieces of standard single-mode fibers,and the lengths of the nonlinear fibers follow the binomial distribution.The mode number of the photon pairs deduced from the measured joint spectrum is∼1.03.The collection efficiency of the photon pairs is found to be∼94%(after background noise correction).The directly measured visibility of two-photon interference of the polarization-entangled photon pairs is∼92%,while no interference is observed in the direct detection of either the signal or idler photons.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11805036,12175033,12147206)the Natural Science Foundation of Fujian Province,China(Grant No.2021J01575)+1 种基金the Natural Science Funds for Distinguished Young Scholar of Fujian Province,China(Grant No.2020J06011)the Project from Fuzhou University(Grant No.JG202001-2)。
文摘We study the kick dynamics of periodically driven quantum systems,and provide a time-independent effective Hamiltonian with the analytical form to reasonably describe the effective dynamics in a long timescale.It is shown that the effective coupling strength can be much larger than the coupling strength of the original system in some parameter regions,which stems from the zero time duration of kicks.Furthermore,different regimes can be transformed from and to each other in the same three-level system by only modulating the period of periodic kicks.In particular,the population of excited states can be selectively suppressed in periodic kicks,benefiting from the large detuning regime of the original system.Finally,some applications and physical implementation of periodic kicks are demonstrated in quantum systems.These unique features would make periodic kicks become a powerful tool for quantum state engineering.
基金Project supported by the National Natural Science Foundation of China (Grant No.11704051)the Qinglan Project of the Jiangsu Education Department and the Research Foundation of Six Talents Peaks Project in Jiangsu Province,China (Grant No.XNY-093)。
文摘A scheme is proposed to investigate the non-classical states generated by a quantum scissors device(QSD) operating on the the cavity mode of an optomechanical system. When the catalytic QSD acts on the cavity mode of the optomechanical system, the resulting state contains only the vacuum, single-photon and two-photon states depending upon the coupling parameter of the optomechanical system as well as the transmission coefficients of beam splitters(BSs). Especially, the output state is just a class of multicomponent cat state truncations at time t = 2π by choosing the appropriate value of coupling parameter. We discuss the success probability of such a state and the fidelity between the output state and input state via QSD. Then the linear entropy is used to investigate the entanglement between the two subsystems, finding that QSD operation can enhance their entanglement degree. Furthermore, we also derive the analytical expression of the Wigner function(WF) for the cavity mode via QSD and numerically analyze the WF distribution in phase space at time t =2π. These results show that the high non-classicality of output state can always be achieved by modulating the coupling parameter of the optomechanical system as well as the transmittance of BSs.
基金Project supported by the FAPEG (CV)INCT-IQ (ATA)the CNPq (ATA,BB)
文摘We propose a scheme to transmit information via the statistical distribution of excitations of a nanomechanical resonator. It employs a controllable coupling between this system and a Cooper pair box. The success probability and the fidelity are calculated and compared with those obtained in an atom-field system in different regimes. Addtionaly, the scheme can also be applied to prepare low excited Fock states.
文摘A scheme is proposed to generate arbitrary, discrete superpostions of squeezed coherent states of the squeezed center of mass of N trapped ions along a straight line in phase space. The scheme is based on a resonant bichromatic excitation of each trapped ion that generates displacement and squeezing in the vibrational motion conditioned to each internal state. In this paper, we also show that such a method can be used for the engineering of motional quantum states.
基金the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0303205)the National Natural Science Foundation of China(Grant Nos.12104282 and 12305014)+1 种基金the Initiative in Quantum Information Technologies of Anhui Province(Grant No.AHY050000)the Fundamental Research Funds for the Central Universities(Grant Nos.JZ2024HGTB0253 and JZ2023HGTA0172).
文摘Counterdiabatic driving (CD) offers a fast and robust route to manipulate quantum systems, which has widespreadapplications in quantum technologies. However, for higher-dimensional complex systems, the exact CD term involving thespectral properties of the system is difficult to calculate and generally takes a complicated form, impeding its experimentalrealization. Recently, many approximate methods have been proposed for designing CD passages in many-body systems. Inthis topical review, we focus on the CD formalism and briefly introduce several experimental constructions and applicationsof approximate CD driving in spin-chain models with nuclear magnetic resonance (NMR) systems.
基金Project supported by the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20233001 and BK20243060)the National Natural Science Foundation of China(Grant No.62288101)。
文摘The estimation of quantum phase differences plays an important role in quantum simulation and quantum computation,yet existing quantum phase estimation algorithms face critical limitations in noisy intermediate-scale quantum(NISQ)devices due to their excessive depth and circuit complexity.We demonstrate a high-precision phase difference estimation protocol based on the Bayesian phase difference estimation algorithm and single-photon projective measurement.The iterative framework of the algorithm,combined with the independence from controlled unitary operations,inherently mitigates circuit depth and complexity limitations.Through an experimental realization on the photonic system,we demonstrate high-precision estimation of diverse phase differences,showing root-mean-square errors(RMSE)below the standard quantum limit𝒪(1/√N)and reaching the Heisenberg scaling𝒪(1/N)after a certain number of iterations.Our scheme provides a critical advantage in quantum resource-constrained scenarios,and advances practical implementations of quantum information tasks under realistic hardware constraints.
基金support from the University Grants Committee/Research Grants Council of the Hong Kong Special Administrative Region,China[Project No.AoE/P-502/20,CRF Project:C5031-22G,C5078-24G,GRF Project:CityU11305223,CityU11300224,CityU11304925,CityU11305125]City University of Hong Kong[Project No.9380131]National Natural Science Foundation of China[Grant No.62375232].
文摘Meta-devices,known for their capability to manipulate light fields at a subwavelength scale,have gained significant traction in the realm of quantum photonics in recent years.They are being utilized in miniaturized applications such as the preparation of quantum light sources and the control and detection of quantum states.In this review,we provide a systematic explanation of the working principles and notable applications of metadevices in quantum optical information processing,while also outlining potential directions for the future development of quantum meta-devices.
基金the National Key Research and Development Program of China(No.2016YFA0301403)the National Natural Science Foundation of China(Nos.11527808 and 11874279)the Science and Technology Program ofTianjin(No.18ZXZNGX00210)。
文摘Using the quantum interference of photon pairs in N-stage nonlinear interferometers(NLIs),the contour of the joint spectral function can be modified into an islands pattern.We perform two series of experiments.One is that all of the nonlinear fibers in pulse pumped NLIs are identical;the other is that the lengths of N pieces of nonlinear fibers are different.We not only demonstrate how the pattern of spectral function changes with the stage number N,but also characterize how the relative intensity of island peaks varies with N.The results well agree with theoretical predictions,revealing that the NLI with lengths of N pieces of nonlinear fibers following binomial distribution can provide a better active filtering function.Our investigation shows that the active filtering effect of multi-stage NLI is a useful tool for efficiently engineering the factorable two-photon state—a desirable resource for quantum information processing.
基金supported by the National Natural Science Foundation of China (Nos.12074283,91836302,11874279,and 62305240)
文摘We report the generation of polarization-entangled photon pairs in the 1550 nm band by pumping an uneven nonlinear interferometer loop with two orthogonally polarized counterpropagating pump pulses.The uneven nonlinear interferometer,providing a more ideal interference pattern due to the elimination of secondary maxima,consists of four pieces of dispersion-shifted fibers sandwiched with three pieces of standard single-mode fibers,and the lengths of the nonlinear fibers follow the binomial distribution.The mode number of the photon pairs deduced from the measured joint spectrum is∼1.03.The collection efficiency of the photon pairs is found to be∼94%(after background noise correction).The directly measured visibility of two-photon interference of the polarization-entangled photon pairs is∼92%,while no interference is observed in the direct detection of either the signal or idler photons.