We investigate few-photon scattering properties in two one-dimensional waveguides chirally coupled to a nonlinear cavity.The quantum states of scattered few photons are solved analytically via a real-space approach,an...We investigate few-photon scattering properties in two one-dimensional waveguides chirally coupled to a nonlinear cavity.The quantum states of scattered few photons are solved analytically via a real-space approach,and the solution indicates the few-photon reflection and transmission properties.When inputting two photons of equal energy to resonate with the cavity,the propagation characteristics of the two photons will be interesting,which is different from the previous anti-bunching effects with a quantum emitter.More importantly,when the total energy of the two incident photons equals the energy of a nonlinear cavity accommodating two photons,influence of the bound state will become larger to result in disappearance of antibunching effect.However,the bound state has no effect on probability of routing to another waveguide.展开更多
Quantum routing in a T-bulge-shaped waveguide system coupled with a driven cyclic three-level atom and a twolevel atom is investigated theoretically.By employing the discrete-coordinate scattering method,exact express...Quantum routing in a T-bulge-shaped waveguide system coupled with a driven cyclic three-level atom and a twolevel atom is investigated theoretically.By employing the discrete-coordinate scattering method,exact expressions of the transport coefficients along three ports of the waveguide channels are derived.Our results show that bidirectional high transfer-rate single-photon routing between two channels can be effectively implemented,with the help of the effective potential generated by two atoms and the external driving.Moreover,multiple band zero-transmission emerges in the scattering spectra,arising from the quantum interferences among photons scattered by the boundary and the bulged resonators.The proposed system may suggest an efficient duplex router with filtering functions.展开更多
Fano-like quantum routing of single photons in a system with two waveguides coupled to two collocated atoms is investigated theoretically. Using a full quantum theory in real space, photonic scattering amplitudes alon...Fano-like quantum routing of single photons in a system with two waveguides coupled to two collocated atoms is investigated theoretically. Using a full quantum theory in real space, photonic scattering amplitudes along four ports of the waveguide network are analytically obtained. It is shown that, by adjusting the atomic dipole-dipole interaction, an evident Fano-line shape emerges in the scattering spectra of the single-dot configuration system. Moreover, Fano resonance can also be achieved by varying the atom-waveguide coupling strength and atomic detuning, in the presence of the atomic dipole-dipole interaction. Therefore, the atomic dipole-dipole interaction may be utilized as a possible way to control spectral Fano-like resonance. The feasibility with the experimental waveguide channels is also discussed.展开更多
We have suggested a novel multiport quantum router of single photons with reflection feedback, which is formed by three waveguides coupled with four single-mode microresonators. The single-photon routing probabilities...We have suggested a novel multiport quantum router of single photons with reflection feedback, which is formed by three waveguides coupled with four single-mode microresonators. The single-photon routing probabilities of four channels in the coupled system are studied theoretically by applying the real-space approach. Numerical results indicate that unidirectional routing in these output channels can be effectively implemented, and the router is tunable to route desired frequencies into the output ports, by varying the inter-resonator detunings via spinning resonator technology. Therefore, the proposed multichannel system can provide potential applications in optical quantum communication.展开更多
Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multi- hop teleportation for wi...Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multi- hop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop telepor- tation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the for- mer, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air inter- face delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.展开更多
We propose a frequency-tunable router of single photons with high routing efficiency, which is constructed by two waveguides mediately linked by a single-mode whispering gallery resonator with a driven three-level emi...We propose a frequency-tunable router of single photons with high routing efficiency, which is constructed by two waveguides mediately linked by a single-mode whispering gallery resonator with a driven three-level emitter. Quantum routing probability in the output port is obtained via the real-space Hamiltonian. By adjusting the resonator–emitter coupling and the drive, the desired continuous central frequencies for the resonance peaks of routing photons can be manipulated nearly linearly, with the assistance of Rabi splitting effect and optical Stark shift. The proposed routing system may provide potential applications in designing other frequency-modulation quantum optical devices, such as multiplexers,filters, and so on.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11975095,12075082,and 11935006)the Science and Technology Innovation Program of Hunan Province,China(Grant No.2020RC4047)。
文摘We investigate few-photon scattering properties in two one-dimensional waveguides chirally coupled to a nonlinear cavity.The quantum states of scattered few photons are solved analytically via a real-space approach,and the solution indicates the few-photon reflection and transmission properties.When inputting two photons of equal energy to resonate with the cavity,the propagation characteristics of the two photons will be interesting,which is different from the previous anti-bunching effects with a quantum emitter.More importantly,when the total energy of the two incident photons equals the energy of a nonlinear cavity accommodating two photons,influence of the bound state will become larger to result in disappearance of antibunching effect.However,the bound state has no effect on probability of routing to another waveguide.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFC0110403)the Scientific Research Foundation of the Jiangxi Provincial Education Department,China(Grant No.GJJ180424).
文摘Quantum routing in a T-bulge-shaped waveguide system coupled with a driven cyclic three-level atom and a twolevel atom is investigated theoretically.By employing the discrete-coordinate scattering method,exact expressions of the transport coefficients along three ports of the waveguide channels are derived.Our results show that bidirectional high transfer-rate single-photon routing between two channels can be effectively implemented,with the help of the effective potential generated by two atoms and the external driving.Moreover,multiple band zero-transmission emerges in the scattering spectra,arising from the quantum interferences among photons scattered by the boundary and the bulged resonators.The proposed system may suggest an efficient duplex router with filtering functions.
基金Supported by the National Natural Science Foundation of China under Grant No 11247032the Natural Science Foundation of Jiangxi Province under Grant Nos 20151BAB202012 and 20151BAB212004the Scientific Research Foundation of the Jiangxi Provincial Education Department under Grant No GJJ160633
文摘Fano-like quantum routing of single photons in a system with two waveguides coupled to two collocated atoms is investigated theoretically. Using a full quantum theory in real space, photonic scattering amplitudes along four ports of the waveguide network are analytically obtained. It is shown that, by adjusting the atomic dipole-dipole interaction, an evident Fano-line shape emerges in the scattering spectra of the single-dot configuration system. Moreover, Fano resonance can also be achieved by varying the atom-waveguide coupling strength and atomic detuning, in the presence of the atomic dipole-dipole interaction. Therefore, the atomic dipole-dipole interaction may be utilized as a possible way to control spectral Fano-like resonance. The feasibility with the experimental waveguide channels is also discussed.
文摘We have suggested a novel multiport quantum router of single photons with reflection feedback, which is formed by three waveguides coupled with four single-mode microresonators. The single-photon routing probabilities of four channels in the coupled system are studied theoretically by applying the real-space approach. Numerical results indicate that unidirectional routing in these output channels can be effectively implemented, and the router is tunable to route desired frequencies into the output ports, by varying the inter-resonator detunings via spinning resonator technology. Therefore, the proposed multichannel system can provide potential applications in optical quantum communication.
基金This project was supported by the Na- tional Natural Science Foundation of China (Grant No. 6157110 and No. 61601120), the Prospective Future Network Project of the Jiangsu Province, China (Grant No. BY2013095-1-18), and the In- dependent Project of State Key Laboratory of Millimeter Waves (Grant No. Z201504).
文摘Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multi- hop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop telepor- tation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the for- mer, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air inter- face delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12365003, 12364024, and 11864014)the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20212BAB201014 and 20224BAB201023)。
文摘We propose a frequency-tunable router of single photons with high routing efficiency, which is constructed by two waveguides mediately linked by a single-mode whispering gallery resonator with a driven three-level emitter. Quantum routing probability in the output port is obtained via the real-space Hamiltonian. By adjusting the resonator–emitter coupling and the drive, the desired continuous central frequencies for the resonance peaks of routing photons can be manipulated nearly linearly, with the assistance of Rabi splitting effect and optical Stark shift. The proposed routing system may provide potential applications in designing other frequency-modulation quantum optical devices, such as multiplexers,filters, and so on.