Starting with some simple representative quantum programming languages, this paper lays stress on quantum computation, language paradigm, program structure, input/output, exception facility, and especially the recent ...Starting with some simple representative quantum programming languages, this paper lays stress on quantum computation, language paradigm, program structure, input/output, exception facility, and especially the recent results of the quantum computation group at Nanjing University, namely the functional quantum programming language NDQFP. All primitive functions and combining forms in NDQFP are given in the appendix.展开更多
Accurate evaluation of elec-tron correlations is essential for the reliable quantitative de-scription of electronic struc-tures in strongly correlated sys-tems,including bond-dissociat-ing molecules,polyradicals,large...Accurate evaluation of elec-tron correlations is essential for the reliable quantitative de-scription of electronic struc-tures in strongly correlated sys-tems,including bond-dissociat-ing molecules,polyradicals,large conjugated molecules,and transition metal complex-es.To provide a user-friendly tool for studying such challeng-ing systems,our team developed Kylin 1.0[J.Comput.Chem.44,1316(2023)],an ab initio quantum chemistry program designed for efficient density matrix renormalization group(DMRG)and post-DMRG methods,enabling high-accuracy calculations with large active spaces.We have now further advanced the software with the release of Kylin 1.3,featuring optimized DMRG algorithms and an improved tensor contraction scheme in the diagonaliza-tion step.Benchmark calculations on the Mn_(4)CaO_(5)cluster demonstrate a remarkable speed-up of up to 16 fater than Kylin 1.0.Moreover,a more user-friendly and efficient algorithm[J.Chem.Theory Comput.17,3414(2021)]for sampling configurations from DMRG wavefunc-tion is implemented as well.Additionally,we have also implemented a spin-adapted version of the externally contracted multi-reference configuration interaction(EC-MRCI)method[J.Phys.Chem.A 128,958(2024)],further enhancing the program’s efficiency and accuracy for electron correlation calculations.展开更多
In this paper we conduct a tentative study on the requirements and the structure for a quantum computer at the software level. From the software point of view, we describe the methodology used to minimize the decohere...In this paper we conduct a tentative study on the requirements and the structure for a quantum computer at the software level. From the software point of view, we describe the methodology used to minimize the decoherence. We con- struct the quantum instruction set for the higher-level computation. We also study the criteria for designing the quantum programming languages.展开更多
基金the National Natural Science Foundation of China (Grant No. 60721002)
文摘Starting with some simple representative quantum programming languages, this paper lays stress on quantum computation, language paradigm, program structure, input/output, exception facility, and especially the recent results of the quantum computation group at Nanjing University, namely the functional quantum programming language NDQFP. All primitive functions and combining forms in NDQFP are given in the appendix.
基金supported by Shandong Provincial Nat-ural Science Foundation(ZR2024ZD30)the National Natural Science Foundation of China(Nos.22325302 and 22403100).
文摘Accurate evaluation of elec-tron correlations is essential for the reliable quantitative de-scription of electronic struc-tures in strongly correlated sys-tems,including bond-dissociat-ing molecules,polyradicals,large conjugated molecules,and transition metal complex-es.To provide a user-friendly tool for studying such challeng-ing systems,our team developed Kylin 1.0[J.Comput.Chem.44,1316(2023)],an ab initio quantum chemistry program designed for efficient density matrix renormalization group(DMRG)and post-DMRG methods,enabling high-accuracy calculations with large active spaces.We have now further advanced the software with the release of Kylin 1.3,featuring optimized DMRG algorithms and an improved tensor contraction scheme in the diagonaliza-tion step.Benchmark calculations on the Mn_(4)CaO_(5)cluster demonstrate a remarkable speed-up of up to 16 fater than Kylin 1.0.Moreover,a more user-friendly and efficient algorithm[J.Chem.Theory Comput.17,3414(2021)]for sampling configurations from DMRG wavefunc-tion is implemented as well.Additionally,we have also implemented a spin-adapted version of the externally contracted multi-reference configuration interaction(EC-MRCI)method[J.Phys.Chem.A 128,958(2024)],further enhancing the program’s efficiency and accuracy for electron correlation calculations.
基金This work was supported by the Chinese National Natural Science Foundation of Innovation Team (Grant No. 61021062), the Chinese National Basic Research of China (973 Program) (2005CB321900), and the Jiangsu Province Natural Science Foundation (2010374, 2011560).
文摘In this paper we conduct a tentative study on the requirements and the structure for a quantum computer at the software level. From the software point of view, we describe the methodology used to minimize the decoherence. We con- struct the quantum instruction set for the higher-level computation. We also study the criteria for designing the quantum programming languages.