期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
An adiabatic quantum optimization for exact cover 3 problem
1
作者 张映玉 许丽莉 李俊青 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期139-141,共3页
A perturbation method is applied to study the structure of the ground state of the adiabatic quantum optimization for the exact cover 3 problem. It is found that the instantaneous ground state near the end of the evol... A perturbation method is applied to study the structure of the ground state of the adiabatic quantum optimization for the exact cover 3 problem. It is found that the instantaneous ground state near the end of the evolution is mainly composed of the eigenstates of the problem Hamiltonian, which are Hamming close to the solution state. And the instantaneous ground state immediately after the starting is mainly formed of low energy eigenstates of the problem Hamiltonian. These results are then applied to estimate the minimum gap for a special case. 展开更多
关键词 adiabatic quantum optimization exact cover 3 problem perturbation expansion
原文传递
Problem-structure-informed quantum approximate optimization for large-scale unit commitment with limited qubits
2
作者 Jingxian Zhou Ziqing Zhu +1 位作者 Linghua Zhu Siqi Bu 《iEnergy》 2025年第4期215-218,共4页
As power systems expand,solving the unit commitment problem(UCP)becomes increasingly challenging due to the curse of dimensionality,and traditional methods often struggle to balance computational efficiency and soluti... As power systems expand,solving the unit commitment problem(UCP)becomes increasingly challenging due to the curse of dimensionality,and traditional methods often struggle to balance computational efficiency and solution optimality.To tackle this issue,we propose a problem-structure-informed quantum approximate optimization algorithm(QAOA)framework that fully exploits the quantum advantage under extremely limited quantum resources.Specifically,we leverage the inherent topological structure of power systems to decompose large-scale UCP instances into smaller subproblems,which are solvable in parallel by limited number of qubits.This decomposition not only circumvents the current hardware limitations of quantum computing but also achieves higher performance as the graph structure of the power system becomes more sparse.Consequently,our approach can be extended to future power systems that are larger and more complex. 展开更多
关键词 Unit commitment problem quadratic unconstrained binary optimization quantum approximate optimization algorithm
在线阅读 下载PDF
An Improved Chaotic Quantum Multi-Objective Harris Hawks Optimization Algorithm for Emergency Centers Site Selection Decision Problem
3
作者 Yuting Zhu Wenyu Zhang +3 位作者 Hainan Wang Junjie Hou Haining Wang Meng Wang 《Computers, Materials & Continua》 2025年第2期2177-2198,共22页
Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urge... Addressing the complex issue of emergency resource distribution center site selection in uncertain environments, this study was conducted to comprehensively consider factors such as uncertainty parameters and the urgency of demand at disaster-affected sites. Firstly, urgency cost, economic cost, and transportation distance cost were identified as key objectives. The study applied fuzzy theory integration to construct a triangular fuzzy multi-objective site selection decision model. Next, the defuzzification theory transformed the fuzzy decision model into a precise one. Subsequently, an improved Chaotic Quantum Multi-Objective Harris Hawks Optimization (CQ-MOHHO) algorithm was proposed to solve the model. The CQ-MOHHO algorithm was shown to rapidly produce high-quality Pareto front solutions and identify optimal site selection schemes for emergency resource distribution centers through case studies. This outcome verified the feasibility and efficacy of the site selection decision model and the CQ-MOHHO algorithm. To further assess CQ-MOHHO’s performance, Zitzler-Deb-Thiele (ZDT) test functions, commonly used in multi-objective optimization, were employed. Comparisons with Multi-Objective Harris Hawks Optimization (MOHHO), Non-dominated Sorting Genetic Algorithm II (NSGA-II), and Multi-Objective Grey Wolf Optimizer (MOGWO) using Generational Distance (GD), Hypervolume (HV), and Inverted Generational Distance (IGD) metrics showed that CQ-MOHHO achieved superior global search ability, faster convergence, and higher solution quality. The CQ-MOHHO algorithm efficiently achieved a balance between multiple objectives, providing decision-makers with satisfactory solutions and a valuable reference for researching and applying emergency site selection problems. 展开更多
关键词 Site selection triangular fuzzy theory chaotic quantum Harris Hawks optimization multi-objective optimization
在线阅读 下载PDF
Solving the subset sum problem by the quantum Ising model with variational quantum optimization based on conditional values at risk 被引量:1
4
作者 Qilin Zheng Miaomiao Yu +3 位作者 Pingyu Zhu Yan Wang Weihong Luo Ping Xu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2024年第8期43-55,共13页
The subset sum problem is a combinatorial optimization problem,and its complexity belongs to the nondeterministic polynomial time complete(NP-Complete)class.This problem is widely used in encryption,planning or schedu... The subset sum problem is a combinatorial optimization problem,and its complexity belongs to the nondeterministic polynomial time complete(NP-Complete)class.This problem is widely used in encryption,planning or scheduling,and integer partitions.An accurate search algorithm with polynomial time complexity has not been found,which makes it challenging to be solved on classical computers.To effectively solve this problem,we translate it into the quantum Ising model and solve it with a variational quantum optimization method based on conditional values at risk.The proposed model needs only n qubits to encode 2ndimensional search space,which can effectively save the encoding quantum resources.The model inherits the advantages of variational quantum algorithms and can obtain good performance at shallow circuit depths while being robust to noise,and it is convenient to be deployed in the Noisy Intermediate Scale Quantum era.We investigate the effects of the scalability,the variational ansatz type,the variational depth,and noise on the model.Moreover,we also discuss the performance of the model under different conditional values at risk.Through computer simulation,the scale can reach more than nine qubits.By selecting the noise type,we construct simulators with different QVs and study the performance of the model with them.In addition,we deploy the model on a superconducting quantum computer of the Origin Quantum Technology Company and successfully solve the subset sum problem.This model provides a new perspective for solving the subset sum problem. 展开更多
关键词 subset sum problem quantum Ising model conditional values at risk variational quantum optimization
原文传递
A Survey of Analysis on Quantum Algorithms for Communication
5
作者 Huang Yuhong Cui Chunfeng +5 位作者 Pan Chengkang Hou Shuai Sun Zhiwen Lu Xian Li Xinying Yuan Yifei 《China Communications》 2025年第6期1-23,共23页
Quantum computing is a promising technology that has the potential to revolutionize many areas of science and technology,including communication.In this review,we discuss the current state of quantum computing in comm... Quantum computing is a promising technology that has the potential to revolutionize many areas of science and technology,including communication.In this review,we discuss the current state of quantum computing in communication and its potential applications in various areas such as network optimization,signal processing,and machine learning for communication.First,the basic principle of quantum computing,quantum physics systems,and quantum algorithms are analyzed.Then,based on the classification of quantum algorithms,several important basic quantum algorithms,quantum optimization algorithms,and quantum machine learning algorithms are discussed in detail.Finally,the basic ideas and feasibility of introducing quantum algorithms into communications are emphatically analyzed,which provides a reference to address computational bottlenecks in communication networks. 展开更多
关键词 network optimization physical system quantum computing quantum machine learning quantum optimization algorithm signal processing
在线阅读 下载PDF
Membrane-inspired quantum bee colony optimization and its applications for decision engine 被引量:3
6
作者 高洪元 李晨琬 《Journal of Central South University》 SCIE EI CAS 2014年第5期1887-1897,共11页
In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorith... In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorithm applies the membrane computing theory to quantum bee colony optimization(QBCO),which is an effective discrete optimization algorithm.The global convergence performance of MQBCO is proved by Markov theory,and the validity of MQBCO is verified by testing the classical benchmark functions.Then the proposed MQBCO algorithm is used to solve decision engine problems of cognitive radio system.By hybridizing the QBCO and membrane computing theory,the quantum state and observation state of the quantum bees can be well evolved within the membrane structure.Simulation results for cognitive radio system show that the proposed decision engine method is superior to the traditional intelligent decision engine algorithms in terms of convergence,precision and stability.Simulation experiments under different communication scenarios illustrate that the balance between three objective functions and the adapted parameter configuration is consistent with the weights of three normalized objective functions. 展开更多
关键词 quantum bee colony optimization membrane computing P system decision engine cognitive radio benchmarkfunction
在线阅读 下载PDF
Multiobjective optimal dispatch of microgrid based on analytic hierarchy process and quantum particle swarm optimization 被引量:7
7
作者 Yuxin Zhao Xiaotong Song +1 位作者 Fei Wang Dawei Cui 《Global Energy Interconnection》 CAS 2020年第6期562-570,共9页
Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispat... Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field. 展开更多
关键词 Analytic hierarchy process(AHP) quantum particle swarm optimization(QPSO) Multiobjective optimal dispatch Microgrid.
在线阅读 下载PDF
Quantum Particle Swarm Optimization Based Convolutional Neural Network for Handwritten Script Recognition 被引量:2
8
作者 Reya Sharma Baijnath Kaushik +2 位作者 Naveen Kumar Gondhi Muhammad Tahir Mohammad Khalid Imam Rahmani 《Computers, Materials & Continua》 SCIE EI 2022年第6期5855-5873,共19页
Even though several advances have been made in recent years,handwritten script recognition is still a challenging task in the pattern recognition domain.This field has gained much interest lately due to its diverse ap... Even though several advances have been made in recent years,handwritten script recognition is still a challenging task in the pattern recognition domain.This field has gained much interest lately due to its diverse application potentials.Nowadays,different methods are available for automatic script recognition.Among most of the reported script recognition techniques,deep neural networks have achieved impressive results and outperformed the classical machine learning algorithms.However,the process of designing such networks right from scratch intuitively appears to incur a significant amount of trial and error,which renders them unfeasible.This approach often requires manual intervention with domain expertise which consumes substantial time and computational resources.To alleviate this shortcoming,this paper proposes a new neural architecture search approach based on meta-heuristic quantum particle swarm optimization(QPSO),which is capable of automatically evolving the meaningful convolutional neural network(CNN)topologies.The computational experiments have been conducted on eight different datasets belonging to three popular Indic scripts,namely Bangla,Devanagari,and Dogri,consisting of handwritten characters and digits.Empirically,the results imply that the proposed QPSO-CNN algorithm outperforms the classical and state-of-the-art methods with faster prediction and higher accuracy. 展开更多
关键词 Neuro-evolution quantum particle swarm optimization deep learning convolutional neural networks handwriting recognition
在线阅读 下载PDF
Chaos quantum particle swarm optimization for reactive power optimization considering voltage stability 被引量:2
9
作者 瞿苏寒 马平 蔡兴国 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第3期351-356,共6页
The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonl... The reactive power optimization considering voltage stability is an effective method to improve voltage stablity margin and decrease network losses,but it is a complex combinatorial optimization problem involving nonlinear functions having multiple local minima and nonlinear and discontinuous constraints. To deal with the problem,quantum particle swarm optimization (QPSO) is firstly introduced in this paper,and according to QPSO,chaotic quantum particle swarm optimization (CQPSO) is presented,which makes use of the randomness,regularity and ergodicity of chaotic variables to improve the quantum particle swarm optimization algorithm. When the swarm is trapped in local minima,a smaller searching space chaos optimization is used to guide the swarm jumping out the local minima. So it can avoid the premature phenomenon and to trap in a local minima of QPSO. The feasibility and efficiency of the proposed algorithm are verified by the results of calculation and simulation for IEEE 14-buses and IEEE 30-buses systems. 展开更多
关键词 reactive power optimization voltage stability margin quantum particle swarm optimization chaos optimization
在线阅读 下载PDF
Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization 被引量:1
10
作者 高飞 李卓球 童恒庆 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第4期1196-1201,共6页
This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniqu... This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems are given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises. 展开更多
关键词 parameter estimation online chaos system quantum particle swarm optimization
原文传递
Direction of arrival estimation method based on quantum electromagnetic field optimization in the impulse noise 被引量:1
11
作者 DU Yanan GAO Hongyuan CHEN Menghan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第3期527-537,共11页
In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exp... In order to resolve direction finding problems in the impulse noise,a direction of arrival(DOA)estimation method is proposed.The proposed DOA estimation method can restrain the impulse noise by using infinite norm exponential kernel covariance matrix and obtain excellent performance via the maximumlikelihood(ML)algorithm.In order to obtain the global optimal solutions of this method,a quantum electromagnetic field optimization(QEFO)algorithm is designed.In view of the QEFO algorithm,the proposed method can resolve the difficulties of DOA estimation in the impulse noise.Comparing with some traditional DOA estimation methods,the proposed DOA estimation method shows high superiority and robustness for determining the DOA of independent and coherent sources,which has been verified via the Monte-Carlo experiments of different schemes,especially in the case of snapshot deficiency,low generalized signal to noise ratio(GSNR)and strong impulse noise.Beyond that,the Cramer-Rao bound(CRB)of angle estimation in the impulse noise and the proof of the convergence of the QEFO algorithm are provided in this paper. 展开更多
关键词 direction of arrival(DOA)estimation impulse noise infinite norm exponential kernel covariance matrix maximum-likelihood(ML)algorithm quantum electromagnetic field optimization(QEFO)algorithm Cramer-Rao bound(CRB)
在线阅读 下载PDF
Quantum Particle Swarm Optimization with Deep Learning-Based Arabic Tweets Sentiment Analysis
12
作者 Badriyya BAl-onazi Abdulkhaleq Q.A.Hassan +5 位作者 Mohamed K.Nour Mesfer Al Duhayyim Abdullah Mohamed Amgad Atta Abdelmageed Ishfaq Yaseen Gouse Pasha Mohammed 《Computers, Materials & Continua》 SCIE EI 2023年第5期2575-2591,共17页
Sentiment Analysis(SA),a Machine Learning(ML)technique,is often applied in the literature.The SA technique is specifically applied to the data collected from social media sites.The research studies conducted earlier u... Sentiment Analysis(SA),a Machine Learning(ML)technique,is often applied in the literature.The SA technique is specifically applied to the data collected from social media sites.The research studies conducted earlier upon the SA of the tweets were mostly aimed at automating the feature extraction process.In this background,the current study introduces a novel method called Quantum Particle Swarm Optimization with Deep Learning-Based Sentiment Analysis on Arabic Tweets(QPSODL-SAAT).The presented QPSODL-SAAT model determines and classifies the sentiments of the tweets written in Arabic.Initially,the data pre-processing is performed to convert the raw tweets into a useful format.Then,the word2vec model is applied to generate the feature vectors.The Bidirectional Gated Recurrent Unit(BiGRU)classifier is utilized to identify and classify the sentiments.Finally,the QPSO algorithm is exploited for the optimal finetuning of the hyperparameters involved in the BiGRU model.The proposed QPSODL-SAAT model was experimentally validated using the standard datasets.An extensive comparative analysis was conducted,and the proposed model achieved a maximum accuracy of 98.35%.The outcomes confirmed the supremacy of the proposed QPSODL-SAAT model over the rest of the approaches,such as the Surface Features(SF),Generic Embeddings(GE),Arabic Sentiment Embeddings constructed using the Hybrid(ASEH)model and the Bidirectional Encoder Representations from Transformers(BERT)model. 展开更多
关键词 Sentiment analysis Arabic tweets quantum particle swarm optimization deep learning word embedding
在线阅读 下载PDF
Quantum particle swarm optimization for micro-grid system with consideration of consumer satisfaction and benefit of generation side
13
作者 LU Xiaojuan CAO Kai GAO Yunbo 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期83-92,共10页
Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of... Considering comprehensive benefit of micro-grid system and consumers,we establish a mathematical model with the goal of the maximum consumer satisfaction and the maximum benefit of power generation side in the view of energy management.An improved multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)algorithm is adopted to obtain the Pareto frontier of consumer satisfaction and the benefit of power generation side.The optimal solution of the non-dominant solution is selected with introducing the power shortage and power loss to maximize the benefit of power generation side,and its reasonableness is verified by numerical simulation.Then,translational load and time-of-use electricity price incentive mechanism are considered and reasonable peak-valley price ratio is adopted to guide users to actively participate in demand response.The simulation results show that the reasonable incentive mechanism increases the benefit of power generation side and improves the consumer satisfaction.Also the mechanism maximizes the utilization of renewable energy and effectively reduces the operation cost of the battery. 展开更多
关键词 micro-grid system consumer satisfaction benefit of power generation side time-of-use electricity price multi-objective local mutation adaptive quantum particle swarm optimization(MO-LM-AQPSO)
在线阅读 下载PDF
Fast Ion Gates without the Lamb-Dicke Approximation by Robust Quantum Optimal Control
14
作者 Ran Liu Xiaodong Yang +2 位作者 Yiheng Lin Yao Lu Jun Li 《Chinese Physics Letters》 2025年第8期75-82,共8页
We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of ... We present a robust quantum optimal control framework for implementing fast entangling gates on ion-trap quantum processors.The framework leverages tailored laser pulses to drive the multiple vibrational sidebands of the ions to create phonon-mediated entangling gates and,unlike the state of the art,requires neither weakcoupling Lamb-Dicke approximation nor perturbation treatment.With the application of gradient-based optimal control,it enables finding amplitude-and phase-modulated laser control protocols that work without the Lamb-Dicke approximation,promising gate speeds on the order of microseconds comparable to the characteristic trap frequencies.Also,robustness requirements on the temperature of the ions and initial optical phase can be conveniently included to pursue high-quality fast gates against experimental imperfections.Our approach represents a step in speeding up quantum gates to achieve larger quantum circuits for quantum computation and simulation,and thus can find applications in near-future experiments. 展开更多
关键词 quantum optimal control framework gradient based optimal control quantum computation Lamb Dicke approximation fast ion gates tailored laser pulses entangling gates robust quantum optimal control
原文传递
Quantum computing in power systems 被引量:5
15
作者 Yifan Zhou Zefan Tang +5 位作者 Nima Nikmehr Pouya Babahajiani Fei Feng Tzu-Chieh Wei Honghao Zheng Peng Zhang 《iEnergy》 2022年第2期170-187,共18页
Electric power systems provide the backbone of modern industrial societies.Enabling scalable grid analytics is the keystone to successfully operating large transmission and distribution systems.However,today’s power ... Electric power systems provide the backbone of modern industrial societies.Enabling scalable grid analytics is the keystone to successfully operating large transmission and distribution systems.However,today’s power systems are suffering from ever-increasing computational burdens in sustaining the expanding communities and deep integration of renewable energy resources,as well as managing huge volumes of data accordingly.These unprecedented challenges call for transformative analytics to support the resilient operations of power systems.Recently,the explosive growth of quantum computing techniques has ignited new hopes of revolutionizing power system computations.Quantum computing harnesses quantum mechanisms to solve traditionally intractable computational problems,which may lead to ultra-scalable and efficient power grid analytics.This paper reviews the newly emerging application of quantum computing techniques in power systems.We present a comprehensive overview of existing quantum-engineered power analytics from different operation perspectives,including static analysis,transient analysis,stochastic analysis,optimization,stability,and control.We thoroughly discuss the related quantum algorithms,their benefits and limitations,hardware implementations,and recommended practices.We also review the quantum networking techniques to ensure secure communication of power systems in the quantum era.Finally,we discuss challenges and future research directions.This paper will hopefully stimulate increasing attention to the development of quantum-engineered smart grids. 展开更多
关键词 quantum computing power system variational quantum algorithms quantum optimization quantum machine learning quantum security
在线阅读 下载PDF
The Quantum Approximate Algorithm for Solving Traveling Salesman Problem 被引量:4
16
作者 Yue Ruan Samuel Marsh +2 位作者 Xilin Xue Zhihao Liu Jingbo Wang 《Computers, Materials & Continua》 SCIE EI 2020年第6期1237-1247,共11页
The Quantum Approximate Optimization Algorithm(QAOA)is an algorithmic framework for finding approximate solutions to combinatorial optimization problems.It consists of interleaved unitary transformations induced by tw... The Quantum Approximate Optimization Algorithm(QAOA)is an algorithmic framework for finding approximate solutions to combinatorial optimization problems.It consists of interleaved unitary transformations induced by two operators labelled the mixing and problem Hamiltonians.To fit this framework,one needs to transform the original problem into a suitable form and embed it into these two Hamiltonians.In this paper,for the well-known NP-hard Traveling Salesman Problem(TSP),we encode its constraints into the mixing Hamiltonian rather than the conventional approach of adding penalty terms to the problem Hamiltonian.Moreover,we map edges(routes)connecting each pair of cities to qubits,which decreases the search space significantly in comparison to other approaches.As a result,our method can achieve a higher probability for the shortest round-trip route with only half the number of qubits consumed compared to IBM Q’s approach.We argue the formalization approach presented in this paper would lead to a generalized framework for finding,in the context of QAOA,high-quality approximate solutions to NP optimization problems. 展开更多
关键词 quantum approximate optimization algorithm traveling salesman problem NP optimization problems
在线阅读 下载PDF
Quantum-Inspired Equilibrium Optimizer for Linear Antenna Array 被引量:1
17
作者 Binwen Zhu Qifang Luo Yongquan Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期385-413,共29页
With the rapid development of communication technology,the problem of antenna array optimization plays a crucial role.Among many types of antennas,line antenna arrays(LAA)are the most commonly applied,but the side lob... With the rapid development of communication technology,the problem of antenna array optimization plays a crucial role.Among many types of antennas,line antenna arrays(LAA)are the most commonly applied,but the side lobe level(SLL)reduction is still a challenging problem.In the radiation process of the linear antenna array,the high side lobe level will interfere with the intensity of the antenna target radiation direction.Many conventional methods are ineffective in obtaining the maximumside lobe level in synthesis,and this paper proposed a quantum equilibrium optimizer(QEO)algorithm for line antenna arrays.Firstly,the linear antenna array model consists of an array element arrangement.Array factor(AF)can be expressed as the combination of array excitation amplitude and position in array space.Then,inspired by the powerful computing power of quantum computing,an improved quantum equilibrium optimizer combining quantum coding and quantum rotation gate strategy is proposed.Finally,the proposed quantum equilibrium optimizer is used to optimize the excitation amplitude of the array elements in the linear antenna array model by numerical simulation to minimize the interference of the side lobe level to the main lobe radiation.Six differentmetaheuristic algorithms are used to optimize the excitation amplitude in three different arrays of line antenna arrays,the experimental results indicated that the quantum equilibrium optimizer is more advantageous in obtaining the maximum side lobe level reduction.Compared with other metaheuristic optimization algorithms,the quantum equilibrium optimizer has advantages in terms of convergence speed and accuracy. 展开更多
关键词 Linear antenna array equilibrium optimizer quantum equilibrium optimizer side lobe level metaheuristic optimization
在线阅读 下载PDF
Scheme for the implementation of 1 → 3 optimal phase-covariant quantum cloning in ion-trap systems 被引量:2
18
作者 杨榕灿 李洪才 +2 位作者 林秀 黄志平 谢鸿 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第3期967-970,共4页
This paper proposes a scheme for the implementation of 1→ 3 optimal phase-covariant quantum cloning with trapped ions. In the present protocol, the required time for the whole procedure is short due to the resonant i... This paper proposes a scheme for the implementation of 1→ 3 optimal phase-covariant quantum cloning with trapped ions. In the present protocol, the required time for the whole procedure is short due to the resonant interaction, which is important in view of decoherence. Furthermore, the scheme is feasible based on current technologies. 展开更多
关键词 resonant interaction 1→3 optimal phase-covariant quantum cloning trapped ions
原文传递
Optimal and robust control of population transfer in asymmetric quantum-dot molecules
19
作者 郭裕 马松山 束传存 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期353-359,共7页
We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population... We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population transfer by accurately controlling the amplitude of a narrow-bandwidth pulse.To overcome fluctuations in control field parameters,we employ a frequency-domain quantum optimal control theory method to optimize the spectral phase of a single pulse with broad bandwidth while preserving the spectral amplitude.It is shown that this spectral-phase-only optimization approach can successfully identify robust and optimal control fields,leading to efficient population transfer to the target state while concurrently suppressing population transfer to undesired states.The method demonstrates resilience to fluctuations in control field parameters,making it a promising approach for reliable and efficient population transfer in practical applications. 展开更多
关键词 population transfer quantum optimal control theory quantum-dot molecules
原文传递
Security-Reliability Analysis and Optimization for Cognitive Two-Way Relay Network with Energy Harvesting
20
作者 Luo Yi Zhou Lihua +3 位作者 Dong Jian Sun Yang Xu Jiahui Xi Kaixin 《China Communications》 SCIE CSCD 2024年第11期163-179,共17页
This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)node... This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm. 展开更多
关键词 artificial noise energy harvesting cognitive two-way relay network hardware impairments physical layer security security-reliability tradeoff self-adaptive quantum particle swarm optimization
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部