Establishing entanglement is an essential task of quantum communication technology.Beyond entanglement,quantum discord,as a measure of quantum correlation,is a necessary prerequisite to the success of entanglement dis...Establishing entanglement is an essential task of quantum communication technology.Beyond entanglement,quantum discord,as a measure of quantum correlation,is a necessary prerequisite to the success of entanglement distribution.To realize efficient quantum communication based on quantum discord,in this paper,we consider the practical advantages of continuous variables and propose a feasible continuous-variable quantum network coding scheme based on quantum discord.By means of entanglement distribution by separable states,it can achieve quantum entanglement distribution from sources to targets in a butterfly network.Compared with the representative discrete-variable quantum network coding schemes,the proposed continuous-variable quantum network coding scheme has a higher probability of entanglement distribution and defends against eavesdropping and forgery attacks.Particularly,the deduced relationship indicates that the increase in entanglement is less than or equal to quantum discord.展开更多
Although perfect quantum network coding has been proved to be achievable, it is stiU puzzling whether it is feasible whenever one or more of the channels are replaced by the hidden ones emerging from quantum entanglem...Although perfect quantum network coding has been proved to be achievable, it is stiU puzzling whether it is feasible whenever one or more of the channels are replaced by the hidden ones emerging from quantum entanglement. The question is answered in this paper. First, we propose a quantum network coding protocol over a butterfly network with two hidden channels. Second, we investigate a more generaJ situation, where d-level quantum letters are transmitted through the network containing arbitrarily distributed hidden channels, and prove that quantum network coding on such networks is still achievable.展开更多
How to establish a secure and efficient quantum network coding algorithm isone of important research topics of quantum secure communications. Based on thebutterfly network model and the characteristics of easy prepara...How to establish a secure and efficient quantum network coding algorithm isone of important research topics of quantum secure communications. Based on thebutterfly network model and the characteristics of easy preparation of Bell states, a novelanti-noise quantum network coding protocol is proposed in this paper. The new protocolencodes and transmits classical information by virtue of Bell states. It can guarantee thetransparency of the intermediate nodes during information, so that the eavesdropper Evedisables to get any information even if he intercepts the transmitted quantum states. Inview of the inevitability of quantum noise in quantum channel used, this paper analyzesthe influence of four kinds of noises on the new protocol in detail further, and verifies theefficiency of the protocol under different noise by mathematical calculation and analysis.In addition, based on the detailed mathematical analysis, the protocol has functioned wellnot only on improving the efficiency of information transmission, throughput and linkutilization in the quantum network, but also on enhancing reliability and antieavesdroppingattacks.展开更多
In many earlier works,perfect quantum state transmission over the butterfly network can be achieved via quantum network coding protocols with the assist of maximally entangled states.However,in actual quantum networks...In many earlier works,perfect quantum state transmission over the butterfly network can be achieved via quantum network coding protocols with the assist of maximally entangled states.However,in actual quantum networks,a maximally entangled state as auxiliary resource is hard to be obtained or easily turned into a non-maximally entangled state subject to all kinds of environmental noises.Therefore,we propose a more practical quantum network coding scheme with the assist of non-maximally entangled states.In this paper,a practical quantum network coding protocol over grail network is proposed,in which the non-maximally entangled resource is assisted and even the desired quantum state can be perfectly transmitted.The achievable rate region,security and practicability of the proposed protocol are discussed and analyzed.This practical quantum network coding protocol proposed over the grail network can be regarded as a useful attempt to help move the theory of quantum network coding towards practicability.展开更多
Quantum network coding is used to solve the congestion problem in quantum communication,which will promote the transmission efficiency of quantum information and the total throughput of quantum network.We propose a no...Quantum network coding is used to solve the congestion problem in quantum communication,which will promote the transmission efficiency of quantum information and the total throughput of quantum network.We propose a novel controlled quantum network coding without information loss.The effective transmission of quantum states on the butterfly network requires the consent form a third-party controller Charlie.Firstly,two pairs of threeparticle non-maximum entangled states are pre-shared between senders and controller.By adding auxiliary particles and local operations,the senders can predict whether a certain quantum state can be successfully transmitted within the butterfly network based on the Z-{10>,|1>}basis.Secondly,when trans-mission fails upon prediction,the quantum state will not be lost,and it will sill be held by the sender.Subsequently,the controller Charlie re-prepares another three-particle non-maximum entangled state to start a new round.When the predicted transmission is successful,the quantum state can be transmitted successfully within the butterfly network.If the receiver wants to receive the effective quantum state,the quantum measurements from Charlie are needed.Thirdly,when the transmission fails,Charlie does not need to integrate the X-{1+>,1->}basis to measure its own particles,by which quantum resources are saved.Charlie not only controls the effective transmission of quantum states,but also the usage of classical and quantum channels.Finally,the implementation of the quantum circuits,as well as a flow chart and safety analysis of our scheme,is proposed.展开更多
Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The...Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.展开更多
As an innovative theory and technology,quantum network coding has become the research hotspot in quantum network communications.In this paper,a quantum remote state preparation scheme based on quantum network coding i...As an innovative theory and technology,quantum network coding has become the research hotspot in quantum network communications.In this paper,a quantum remote state preparation scheme based on quantum network coding is proposed.Comparing with the general quantum remote state preparation schemes,our proposed scheme brings an arbitrary unknown quantum state finally prepared remotely through the quantum network,by designing the appropriate encoding and decoding steps for quantum network coding.What is worth mentioning,from the network model,this scheme is built on the quantum k-pair network which is the expansion of the typical bottleneck network—butterfly network.Accordingly,it can be treated as an efficient quantum network preparation scheme due to the characteristics of network coding,and it also makes the proposed scheme more applicable to the large-scale quantum networks.In addition,the fact of an arbitrary unknown quantum state remotely prepared means that the senders do not need to know the desired quantum state.Thus,the security of the proposed scheme is higher.Moreover,this scheme can always achieve the success probability of 1 and 1-max flow of value k.Thus,the communication efficiency of the proposed scheme is higher.Therefore,the proposed scheme turns out to be practicable,secure and efficient,which helps to effectively enrich the theory of quantum remote state preparation.展开更多
In order to optimize the network coding resources in a multicast network, an improved adaptive quantum genetic algorithm (AM-QEA) was proposed. Firstly, the optimization problem was translated into a graph decompositi...In order to optimize the network coding resources in a multicast network, an improved adaptive quantum genetic algorithm (AM-QEA) was proposed. Firstly, the optimization problem was translated into a graph decomposition problem. Then the graph decomposition problem was represented by the binary coding, which can be processed by quantum genetic algorithm. At last, a multiple-operators based adaptive quantum genetic algorithm was proposed to optimize the network coding resources. In the algorithm, the individual fitness evaluation operator and population mutation adjustment operator were employed to solve the shortcomings of common quantum genetic algorithm, such as high convergence rate, easy to fall into local optimal solution and low diversity of the population in later stage. The experimental results under various topologies show that the proposed algorithm has the advantages of high multicast success rate, fast convergence speed and strong global search ability in resolving the network coding resource optimization problems.展开更多
We propose a scheme where one can exploit auxiliary resources to achieve quantum multicast communication with network coding over the butterfly network.In this paper,we propose the quantum 2-pair multicast communicati...We propose a scheme where one can exploit auxiliary resources to achieve quantum multicast communication with network coding over the butterfly network.In this paper,we propose the quantum 2-pair multicast communication scheme,and extend it to k-pair multicast communication over the extended butterfly network.Firstly,an EPR pair is shared between each adjacent node on the butterfly network,and make use of local operation and classical communication to generate entangled relationship between non-adjacent nodes.Secondly,each sender adds auxiliary particles according to the multicast number k,in which the CNOT operations are applied to form the multi-particle entangled state.Finally,combined with network coding and free classical communication,quantum multicast communication based on quantum measurements is completed over the extended butterfly network.Not only the bottleneck problem is solved,but also quantum multicast communication can be completed in our scheme.At the same time,regardless of multicast number k,the maximum capacity of classical channel is 2 bits,and quantum channel is used only once.展开更多
Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum err...Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise.展开更多
A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of ...A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of the code. Recently,the chaotic phase shifters were proposed to guarantee the orthogonality by different chaotic signals and spread the spectral content of the quantum states. In this letter, we propose to implement the code division multiple access quantum network by using chaotic phase shifters and synchronization. Due to the orthogonality of the different chaotic phase shifter, every pair of users can faithfully transmit quantum information through a common channel and have little crosstalk between different users. Meanwhile, the broadband spectra of chaotic signals efficiently help the quantum states to defend against channel loss and noise.展开更多
Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error corre...Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.展开更多
Bicycle sharing scheduling is a complex mathematical optimization problem, and it is challenging to design a general algorithm to solve it well due to the uncertainty of its influencing factors. This paper creatively ...Bicycle sharing scheduling is a complex mathematical optimization problem, and it is challenging to design a general algorithm to solve it well due to the uncertainty of its influencing factors. This paper creatively establishes a new mathematical model to determine the appropriate number of vehicles to be placed at each placement point by calculating the traffic weights of the placement points and optimizes the hyperparameters in the algorithm by adaptive quantum genetic algorithm, and at the same time combines the network flow algorithm in graph theory to calculate the most suitable scheduling scheme for shared bicycles by establishing the minimum cost maximum flow network. Through experimental validation, the network flow-based algorithm proposed in this paper allows for a more convenient calculation of the daily bike-sharing scheduling scheme compared to previous algorithms. An adaptive quantum genetic algorithm optimizes the hyperparameters appearing in the algorithm. The experimental results show that the algorithm achieves good results as the transportation cost is only 1/15th of the GA algorithm and 1/9th of the QGA algorithm.展开更多
Quantum error-correcting codes are essential for fault-tolerant quantum computing,as they effectively detect and correct noise-induced errors by distributing information across multiple physical qubits.The subsystem s...Quantum error-correcting codes are essential for fault-tolerant quantum computing,as they effectively detect and correct noise-induced errors by distributing information across multiple physical qubits.The subsystem surface code with three-qubit check operators demonstrates significant application potential due to its simplified measurement operations and low logical error rates.However,the existing minimum-weight perfect matching(MWPM)algorithm exhibits high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoder based on a graph attention network(GAT),representing error syndromes as undirected graphs with edge weights,and employing a multihead attention mechanism to efficiently aggregate node features and enable parallel computation.Compared to MWPM,the GAT decoder exhibits linear growth in computational complexity,adapts to different quantum code structures,and demonstrates stronger robustness under high physical error rates.The experimental results demonstrate that the proposed decoder achieves an overall accuracy of 89.95%under various small code lattice sizes(L=2,3,4,5),with the logical error rate threshold increasing to 0.0078,representing an improvement of approximately 13.04%compared to the MWPM decoder.This result significantly outperforms traditional methods,showcasing superior performance under small code lattice sizes and providing a more efficient decoding solution for large-scale quantum error correction.展开更多
We present a complete multiple round quantum dense coding scheme for improving the source ca-pacity of that introduced recently by Zhang et al. The receiver resorts to two qubits for storing the four local unitary ope...We present a complete multiple round quantum dense coding scheme for improving the source ca-pacity of that introduced recently by Zhang et al. The receiver resorts to two qubits for storing the four local unitary operations in each round.展开更多
An adaptive quantum-inspired evolutionary algorithm based on Hamming distance (HD-QEA) was presented to optimize the network coding resources in multicast networks. In the HD-QEA, the diversity among individuals was...An adaptive quantum-inspired evolutionary algorithm based on Hamming distance (HD-QEA) was presented to optimize the network coding resources in multicast networks. In the HD-QEA, the diversity among individuals was taken into consideration, and a suitable rotation angle step (RAS) was assigned to each individual according to the Hamming distance. Performance comparisons were conducted among the HD-QEA, a basic quantum-inspired evolutionary algorithm (QEA) and an individual's fitness based adaptive QEA. A solid demonstration was provided that the proposed HD-QEA is better than the other two algorithms in terms of the convergence speed and the global optimization capability when they are employed to optimize the network coding resources in multicast networks.展开更多
基金This project is supported by the National Natural Science Foundation of China(No.61571024,No.61971021)Aeronautical Science Foundation of China(No.2018ZC51016)the National Key Research and Development Program of China(No.2016YFC1000307)for valuable helps.
文摘Establishing entanglement is an essential task of quantum communication technology.Beyond entanglement,quantum discord,as a measure of quantum correlation,is a necessary prerequisite to the success of entanglement distribution.To realize efficient quantum communication based on quantum discord,in this paper,we consider the practical advantages of continuous variables and propose a feasible continuous-variable quantum network coding scheme based on quantum discord.By means of entanglement distribution by separable states,it can achieve quantum entanglement distribution from sources to targets in a butterfly network.Compared with the representative discrete-variable quantum network coding schemes,the proposed continuous-variable quantum network coding scheme has a higher probability of entanglement distribution and defends against eavesdropping and forgery attacks.Particularly,the deduced relationship indicates that the increase in entanglement is less than or equal to quantum discord.
基金Supported by the National Natural Science Foundation of China under Grant No.61300203
文摘Although perfect quantum network coding has been proved to be achievable, it is stiU puzzling whether it is feasible whenever one or more of the channels are replaced by the hidden ones emerging from quantum entanglement. The question is answered in this paper. First, we propose a quantum network coding protocol over a butterfly network with two hidden channels. Second, we investigate a more generaJ situation, where d-level quantum letters are transmitted through the network containing arbitrarily distributed hidden channels, and prove that quantum network coding on such networks is still achievable.
文摘How to establish a secure and efficient quantum network coding algorithm isone of important research topics of quantum secure communications. Based on thebutterfly network model and the characteristics of easy preparation of Bell states, a novelanti-noise quantum network coding protocol is proposed in this paper. The new protocolencodes and transmits classical information by virtue of Bell states. It can guarantee thetransparency of the intermediate nodes during information, so that the eavesdropper Evedisables to get any information even if he intercepts the transmitted quantum states. Inview of the inevitability of quantum noise in quantum channel used, this paper analyzesthe influence of four kinds of noises on the new protocol in detail further, and verifies theefficiency of the protocol under different noise by mathematical calculation and analysis.In addition, based on the detailed mathematical analysis, the protocol has functioned wellnot only on improving the efficiency of information transmission, throughput and linkutilization in the quantum network, but also on enhancing reliability and antieavesdroppingattacks.
基金supported by the National Natural Science Foundation of China(Grant Nos.61671087,92046001,61962009,61003287,61370188,61373131)the Scientific Research Common Program of Beijing Municipal Commission of Education(KM202010015009,KM201610015002)+6 种基金the Joint Funding Project of Beijing Municipal Commission of Education and Beijing Natural Science Fund Committee(KZ201710015010)the Initial Funding for the Doctoral Program of BIGC(27170120003/020)the Fok Ying Tung Education Foundation(Grant No.131067)the Fundamental Research Funds for the Central Universities(Grant No.2019XD-A02)the Fundamental Research Funds in Heilongjiang Provincial Universities(135509116)the Major Scientific and Technological Special Project of Guizhou Province(20183001)Huawei Technologies Co.Ltd.(No.YBN2020085019),PAPD and CICAEET funds.
文摘In many earlier works,perfect quantum state transmission over the butterfly network can be achieved via quantum network coding protocols with the assist of maximally entangled states.However,in actual quantum networks,a maximally entangled state as auxiliary resource is hard to be obtained or easily turned into a non-maximally entangled state subject to all kinds of environmental noises.Therefore,we propose a more practical quantum network coding scheme with the assist of non-maximally entangled states.In this paper,a practical quantum network coding protocol over grail network is proposed,in which the non-maximally entangled resource is assisted and even the desired quantum state can be perfectly transmitted.The achievable rate region,security and practicability of the proposed protocol are discussed and analyzed.This practical quantum network coding protocol proposed over the grail network can be regarded as a useful attempt to help move the theory of quantum network coding towards practicability.
基金This work is supported by NSFC(Grant Nos.92046001,61571024,61671087,61962009,61971021)the Aeronautical Science Foundation of China(2018ZC51016)+4 种基金the Fundamental Research Funds for the Central Universities(Grant No.2019XD-A02)the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant Nos.2018BDKFJJ018,2019BDKFJJ010,2019BDKFJJ014)the Open Research Project of the State Key Laboratory of Media Convergence and Communication,Communication University of China,China(Grant No.SKLMCC2020KF006)Huawei Technologies Co.Ltd(Grant No.YBN2020085019)the Scientific Research Foundation of North China University of Technology.
文摘Quantum network coding is used to solve the congestion problem in quantum communication,which will promote the transmission efficiency of quantum information and the total throughput of quantum network.We propose a novel controlled quantum network coding without information loss.The effective transmission of quantum states on the butterfly network requires the consent form a third-party controller Charlie.Firstly,two pairs of threeparticle non-maximum entangled states are pre-shared between senders and controller.By adding auxiliary particles and local operations,the senders can predict whether a certain quantum state can be successfully transmitted within the butterfly network based on the Z-{10>,|1>}basis.Secondly,when trans-mission fails upon prediction,the quantum state will not be lost,and it will sill be held by the sender.Subsequently,the controller Charlie re-prepares another three-particle non-maximum entangled state to start a new round.When the predicted transmission is successful,the quantum state can be transmitted successfully within the butterfly network.If the receiver wants to receive the effective quantum state,the quantum measurements from Charlie are needed.Thirdly,when the transmission fails,Charlie does not need to integrate the X-{1+>,1->}basis to measure its own particles,by which quantum resources are saved.Charlie not only controls the effective transmission of quantum states,but also the usage of classical and quantum channels.Finally,the implementation of the quantum circuits,as well as a flow chart and safety analysis of our scheme,is proposed.
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)the Joint Fund of Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2022LL.Z012 and ZR2021LLZ001)the Key Research and Development Program of Shandong Province,China(Grant No.2023CXGC010901).
文摘Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.61370188,62176273,61962009)the Scientific Research Common Program of Beijing Municipal Commission of Education(KM202010015009,KM202110015004)+4 种基金Initial Funding for the Doctoral Program of BIGC(27170121001/009)the Open Foundation of State key Laboratory of Networking and Switching Technology(Beijing University of Posts and Telecommunications)(SKLNST-2021-1-16)the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province(Grant No.SKLACSS-202101)the Fundamental Research Funds for Beijing Municipal Commission of Education,Beijing Urban Governance Research Base of North China University of Technologythe Natural Science Foundation of Inner Mongolia(2021MS06006).
文摘As an innovative theory and technology,quantum network coding has become the research hotspot in quantum network communications.In this paper,a quantum remote state preparation scheme based on quantum network coding is proposed.Comparing with the general quantum remote state preparation schemes,our proposed scheme brings an arbitrary unknown quantum state finally prepared remotely through the quantum network,by designing the appropriate encoding and decoding steps for quantum network coding.What is worth mentioning,from the network model,this scheme is built on the quantum k-pair network which is the expansion of the typical bottleneck network—butterfly network.Accordingly,it can be treated as an efficient quantum network preparation scheme due to the characteristics of network coding,and it also makes the proposed scheme more applicable to the large-scale quantum networks.In addition,the fact of an arbitrary unknown quantum state remotely prepared means that the senders do not need to know the desired quantum state.Thus,the security of the proposed scheme is higher.Moreover,this scheme can always achieve the success probability of 1 and 1-max flow of value k.Thus,the communication efficiency of the proposed scheme is higher.Therefore,the proposed scheme turns out to be practicable,secure and efficient,which helps to effectively enrich the theory of quantum remote state preparation.
文摘In order to optimize the network coding resources in a multicast network, an improved adaptive quantum genetic algorithm (AM-QEA) was proposed. Firstly, the optimization problem was translated into a graph decomposition problem. Then the graph decomposition problem was represented by the binary coding, which can be processed by quantum genetic algorithm. At last, a multiple-operators based adaptive quantum genetic algorithm was proposed to optimize the network coding resources. In the algorithm, the individual fitness evaluation operator and population mutation adjustment operator were employed to solve the shortcomings of common quantum genetic algorithm, such as high convergence rate, easy to fall into local optimal solution and low diversity of the population in later stage. The experimental results under various topologies show that the proposed algorithm has the advantages of high multicast success rate, fast convergence speed and strong global search ability in resolving the network coding resource optimization problems.
基金the National Natural Science Foundation of China(Grant Nos.92046001,61671087,61962009,and 61971021)the Fundamental Research Funds for the Central Universities(Grant Nos.2019XD-A02 and 2020RC38)+2 种基金the Fund from Huawei Technologies Co.Ltd(Grant No.YBN2020085019)the Open Foundation of Guizhou Provincial Key Laboratory of Public Big Data(Grant No.2018BDKFJJ018)the Fundamental Research Funds for Beijing Municipal Commission of Education,the Scientific Research Launch Funds of North China University of Technology,and Beijing Urban Governance Research Base of North China University of Technology.
文摘We propose a scheme where one can exploit auxiliary resources to achieve quantum multicast communication with network coding over the butterfly network.In this paper,we propose the quantum 2-pair multicast communication scheme,and extend it to k-pair multicast communication over the extended butterfly network.Firstly,an EPR pair is shared between each adjacent node on the butterfly network,and make use of local operation and classical communication to generate entangled relationship between non-adjacent nodes.Secondly,each sender adds auxiliary particles according to the multicast number k,in which the CNOT operations are applied to form the multi-particle entangled state.Finally,combined with network coding and free classical communication,quantum multicast communication based on quantum measurements is completed over the extended butterfly network.Not only the bottleneck problem is solved,but also quantum multicast communication can be completed in our scheme.At the same time,regardless of multicast number k,the maximum capacity of classical channel is 2 bits,and quantum channel is used only once.
基金the National Natural Science Foundation of China(Grant Nos.11975132 and 61772295)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019YQ01)the Project of Shandong Province Higher Educational Science and Technology Program,China(Grant No.J18KZ012).
文摘Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise.
基金supported by the National Natural Science Foundation of China(Grant Nos.61475099 and 61102053)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices(Grant No.KF201405)+1 种基金the Open Fund of IPOC(BUPT)(Grant No.IPOC2015B004)the Program of State Key Laboratory of Information Security(Grant No.2016-MS-05)
文摘A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of the code. Recently,the chaotic phase shifters were proposed to guarantee the orthogonality by different chaotic signals and spread the spectral content of the quantum states. In this letter, we propose to implement the code division multiple access quantum network by using chaotic phase shifters and synchronization. Due to the orthogonality of the different chaotic phase shifter, every pair of users can faithfully transmit quantum information through a common channel and have little crosstalk between different users. Meanwhile, the broadband spectra of chaotic signals efficiently help the quantum states to defend against channel loss and noise.
基金Project supported by Natural Science Foundation of Shandong Province,China (Grant Nos.ZR2021MF049,ZR2022LLZ012,and ZR2021LLZ001)。
文摘Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.
文摘Bicycle sharing scheduling is a complex mathematical optimization problem, and it is challenging to design a general algorithm to solve it well due to the uncertainty of its influencing factors. This paper creatively establishes a new mathematical model to determine the appropriate number of vehicles to be placed at each placement point by calculating the traffic weights of the placement points and optimizes the hyperparameters in the algorithm by adaptive quantum genetic algorithm, and at the same time combines the network flow algorithm in graph theory to calculate the most suitable scheduling scheme for shared bicycles by establishing the minimum cost maximum flow network. Through experimental validation, the network flow-based algorithm proposed in this paper allows for a more convenient calculation of the daily bike-sharing scheduling scheme compared to previous algorithms. An adaptive quantum genetic algorithm optimizes the hyperparameters appearing in the algorithm. The experimental results show that the algorithm achieves good results as the transportation cost is only 1/15th of the GA algorithm and 1/9th of the QGA algorithm.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)the Joint Fund of the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)the Key Research and Development Program of Shandong Province,China(Grant No.2023CXGC010901)。
文摘Quantum error-correcting codes are essential for fault-tolerant quantum computing,as they effectively detect and correct noise-induced errors by distributing information across multiple physical qubits.The subsystem surface code with three-qubit check operators demonstrates significant application potential due to its simplified measurement operations and low logical error rates.However,the existing minimum-weight perfect matching(MWPM)algorithm exhibits high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoder based on a graph attention network(GAT),representing error syndromes as undirected graphs with edge weights,and employing a multihead attention mechanism to efficiently aggregate node features and enable parallel computation.Compared to MWPM,the GAT decoder exhibits linear growth in computational complexity,adapts to different quantum code structures,and demonstrates stronger robustness under high physical error rates.The experimental results demonstrate that the proposed decoder achieves an overall accuracy of 89.95%under various small code lattice sizes(L=2,3,4,5),with the logical error rate threshold increasing to 0.0078,representing an improvement of approximately 13.04%compared to the MWPM decoder.This result significantly outperforms traditional methods,showcasing superior performance under small code lattice sizes and providing a more efficient decoding solution for large-scale quantum error correction.
基金Supported by the National Natural Science Foundation of China (Grant Nos 10604008, 10435020, 10254002, A0325401 and 10374010)Beijing Education Committee (Grant No. XK100270454)
文摘We present a complete multiple round quantum dense coding scheme for improving the source ca-pacity of that introduced recently by Zhang et al. The receiver resorts to two qubits for storing the four local unitary operations in each round.
基金supported by the National Natural Science Foundation of China (61473179)the Doctor Foundation of Shandong Province (BS2013DX032)the Youth Scholars Development Program of Shandong University of Technology (2014-09)
文摘An adaptive quantum-inspired evolutionary algorithm based on Hamming distance (HD-QEA) was presented to optimize the network coding resources in multicast networks. In the HD-QEA, the diversity among individuals was taken into consideration, and a suitable rotation angle step (RAS) was assigned to each individual according to the Hamming distance. Performance comparisons were conducted among the HD-QEA, a basic quantum-inspired evolutionary algorithm (QEA) and an individual's fitness based adaptive QEA. A solid demonstration was provided that the proposed HD-QEA is better than the other two algorithms in terms of the convergence speed and the global optimization capability when they are employed to optimize the network coding resources in multicast networks.