期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Quantum-assisted early detection of diabetic retinopathy: A novel integration of quantum machine learning in biomedical imaging
1
作者 Edwin-Gerardo Acuña Acuña 《Medical Data Mining》 2025年第3期50-58,共9页
Background:Diabetic retinopathy remains one of the leading causes of vision impairment globally and poses diagnostic challenges due to the complexity of clinical imaging data and variability in disease progression.In ... Background:Diabetic retinopathy remains one of the leading causes of vision impairment globally and poses diagnostic challenges due to the complexity of clinical imaging data and variability in disease progression.In this study,we propose an innovative methodology that integrates artificial intelligence and quantum computing to enhance the early detection and clinical management of diabetic retinopathy.Methods:We developed a hybrid model combining machine learning algorithms with simulated quantum circuits to classify retinal images and associated clinical data.Anonymized datasets were used,and deep inductive transfer techniques were applied to improve diagnostic precision and generalizability.Results:The proposed model achieved a classification accuracy of 94.6%,significantly reducing diagnostic time and improving the prioritization of high-risk cases compared to conventional methods.The hybrid approach demonstrated superior performance in processing speed and accuracy for complex clinical scenarios.Conclusion:This study highlights the potential of combining AI and quantum computing to revolutionize the diagnosis of diabetic retinopathy.The proposed model provides a scalable and efficient solution for clinical environments,enabling faster and more accurate decision-making in ophthalmic care. 展开更多
关键词 quantum machine learning diabetic retinopathy biomedical imaging variational quantum classifier quantum diagnosis smart healthcare
暂未订购
Diabetes Type 2: Poincaré Data Preprocessing for Quantum Machine Learning 被引量:1
2
作者 Daniel Sierra-Sosa Juan D.Arcila-Moreno +1 位作者 Begonya Garcia-Zapirain Adel Elmaghraby 《Computers, Materials & Continua》 SCIE EI 2021年第5期1849-1861,共13页
Quantum Machine Learning(QML)techniques have been recently attracting massive interest.However reported applications usually employ synthetic or well-known datasets.One of these techniques based on using a hybrid appr... Quantum Machine Learning(QML)techniques have been recently attracting massive interest.However reported applications usually employ synthetic or well-known datasets.One of these techniques based on using a hybrid approach combining quantum and classic devices is the Variational Quantum Classifier(VQC),which development seems promising.Albeit being largely studied,VQC implementations for“real-world”datasets are still challenging on Noisy Intermediate Scale Quantum devices(NISQ).In this paper we propose a preprocessing pipeline based on Stokes parameters for data mapping.This pipeline enhances the prediction rates when applying VQC techniques,improving the feasibility of solving classification problems using NISQ devices.By including feature selection techniques and geometrical transformations,enhanced quantum state preparation is achieved.Also,a representation based on the Stokes parameters in the PoincaréSphere is possible for visualizing the data.Our results show that by using the proposed techniques we improve the classification score for the incidence of acute comorbid diseases in Type 2 Diabetes Mellitus patients.We used the implemented version of VQC available on IBM’s framework Qiskit,and obtained with two and three qubits an accuracy of 70%and 72%respectively. 展开更多
关键词 quantum machine learning data preprocessing stokes parameters Poincarésphere
在线阅读 下载PDF
Pancreatic Cancer Data Classification with Quantum Machine Learning 被引量:1
3
作者 Amit Saxena Smita Saxena 《Journal of Quantum Computing》 2023年第1期1-13,共13页
Quantum computing is a promising new approach to tackle the complex real-world computational problems by harnessing the power of quantum mechanics principles.The inherent parallelism and exponential computational powe... Quantum computing is a promising new approach to tackle the complex real-world computational problems by harnessing the power of quantum mechanics principles.The inherent parallelism and exponential computational power of quantum systems hold the potential to outpace classical counterparts in solving complex optimization problems,which are pervasive in machine learning.Quantum Support Vector Machine(QSVM)is a quantum machine learning algorithm inspired by classical Support Vector Machine(SVM)that exploits quantum parallelism to efficiently classify data points in high-dimensional feature spaces.We provide a comprehensive overview of the underlying principles of QSVM,elucidating how different quantum feature maps and quantum kernels enable the manipulation of quantum states to perform classification tasks.Through a comparative analysis,we reveal the quantum advantage achieved by these algorithms in terms of speedup and solution quality.As a case study,we explored the potential of quantum paradigms in the context of a real-world problem:classifying pancreatic cancer biomarker data.The Support Vector Classifier(SVC)algorithm was employed for the classical approach while the QSVM algorithm was executed on a quantum simulator provided by the Qiskit quantum computing framework.The classical approach as well as the quantum-based techniques reported similar accuracy.This uniformity suggests that these methods effectively captured similar underlying patterns in the dataset.Remarkably,quantum implementations exhibited substantially reduced execution times demonstrating the potential of quantum approaches in enhancing classification efficiency.This affirms the growing significance of quantum computing as a transformative tool for augmenting machine learning paradigms and also underscores the potency of quantum execution for computational acceleration. 展开更多
关键词 quantum computing quantum machine learning quantum support vector machine multiclass classification
在线阅读 下载PDF
Explainable Heart Disease Prediction Using Ensemble-Quantum Machine Learning Approach
4
作者 Ghada Abdulsalam Souham Meshoul Hadil Shaiba 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期761-779,共19页
Nowadays,quantum machine learning is attracting great interest in a wide range offields due to its potential superior performance and capabilities.The massive increase in computational capacity and speed of quantum com... Nowadays,quantum machine learning is attracting great interest in a wide range offields due to its potential superior performance and capabilities.The massive increase in computational capacity and speed of quantum computers can lead to a quantum leap in the healthcarefield.Heart disease seriously threa-tens human health since it is the leading cause of death worldwide.Quantum machine learning methods can propose effective solutions to predict heart disease and aid in early diagnosis.In this study,an ensemble machine learning model based on quantum machine learning classifiers is proposed to predict the risk of heart disease.The proposed model is a bagging ensemble learning model where a quantum support vector classifier was used as a base classifier.Further-more,in order to make the model’s outcomes more explainable,the importance of every single feature in the prediction is computed and visualized using SHapley Additive exPlanations(SHAP)framework.In the experimental study,other stand-alone quantum classifiers,namely,Quantum Support Vector Classifier(QSVC),Quantum Neural Network(QNN),and Variational Quantum Classifier(VQC)are applied and compared with classical machine learning classifiers such as Sup-port Vector Machine(SVM),and Artificial Neural Network(ANN).The experi-mental results on the Cleveland dataset reveal the superiority of QSVC compared to the others,which explains its use in the proposed bagging model.The Bagging-QSVC model outperforms all aforementioned classifiers with an accuracy of 90.16%while showing great competitiveness compared to some state-of-the-art models using the same dataset.The results of the study indicate that quantum machine learning classifiers perform better than classical machine learning classi-fiers in predicting heart disease.In addition,the study reveals that the bagging ensemble learning technique is effective in improving the prediction accuracy of quantum classifiers. 展开更多
关键词 machine learning ensemble learning quantum machine learning explainable machine learning heart disease prediction
在线阅读 下载PDF
Variational data encoding and correlations in quantum-enhanced machine learning
5
作者 Ming-Hao Wang Hua L¨u 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期298-306,共9页
Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tac... Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tackles two pivotal challenges in the realm of quantum computing:firstly,the development of an effective encoding protocol for translating classical data into quantum states,a critical step for any quantum computation.Different encoding strategies can significantly influence quantum computer performance.Secondly,we address the need to counteract the inevitable noise that can hinder quantum acceleration.Our primary contribution is the introduction of a novel variational data encoding method,grounded in quantum regression algorithm models.By adapting the learning concept from machine learning,we render data encoding a learnable process.This allowed us to study the role of quantum correlation in data encoding.Through numerical simulations of various regression tasks,we demonstrate the efficacy of our variational data encoding,particularly post-learning from instructional data.Moreover,we delve into the role of quantum correlation in enhancing task performance,especially in noisy environments.Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference,thus advancing the frontier of quantum computing. 展开更多
关键词 quantum machine learning variational data encoding quantum correlation
原文传递
Distributed secure quantum machine learning 被引量:10
6
作者 Yu-Bo Sheng Lan Zhou 《Science Bulletin》 SCIE EI CAS CSCD 2017年第14期1025-1029,共5页
Distributed secure quantum machine learning (DSQML) enables a classical client with little quantum technology to delegate a remote quantum machine learning to the quantum server with the privacy data preserved. More... Distributed secure quantum machine learning (DSQML) enables a classical client with little quantum technology to delegate a remote quantum machine learning to the quantum server with the privacy data preserved. Moreover, DSQML can be extended to a more general case that the client does not have enough data, and resorts both the remote quantum server and remote databases to perform the secure machi~ learning. Here we propose a DSQML protocol that the client can classify two-dimensional vectors to dif- ferent clusters, resorting to a remote small-scale photon quantum computation processor. The protocol is secure without leaking any relevant information to the Eve. Any eavesdropper who attempts to intercept and disturb the learning process can be noticed. In principle, this protocol can be used to classify high dimensional vectors and may provide a new viewpoint and application for future "big data". 展开更多
关键词 quantum machine learning quantum communication quantum computation Big data
原文传递
A Survey of Analysis on Quantum Algorithms for Communication
7
作者 Huang Yuhong Cui Chunfeng +5 位作者 Pan Chengkang Hou Shuai Sun Zhiwen Lu Xian Li Xinying Yuan Yifei 《China Communications》 2025年第6期1-23,共23页
Quantum computing is a promising technology that has the potential to revolutionize many areas of science and technology,including communication.In this review,we discuss the current state of quantum computing in comm... Quantum computing is a promising technology that has the potential to revolutionize many areas of science and technology,including communication.In this review,we discuss the current state of quantum computing in communication and its potential applications in various areas such as network optimization,signal processing,and machine learning for communication.First,the basic principle of quantum computing,quantum physics systems,and quantum algorithms are analyzed.Then,based on the classification of quantum algorithms,several important basic quantum algorithms,quantum optimization algorithms,and quantum machine learning algorithms are discussed in detail.Finally,the basic ideas and feasibility of introducing quantum algorithms into communications are emphatically analyzed,which provides a reference to address computational bottlenecks in communication networks. 展开更多
关键词 network optimization physical system quantum computing quantum machine learning quantum optimization algorithm signal processing
在线阅读 下载PDF
QHF-CS: Quantum-Enhanced Heart Failure Prediction Using Quantum CNN with Optimized Feature Qubit Selection with Cuckoo Search in Skewed Clinical Data
8
作者 Prasanna Kottapalle Tan Kuan Tak +2 位作者 Pravin Ramdas Kshirsagar Gopichand Ginnela Vijaya Krishna Akula 《Computers, Materials & Continua》 2025年第8期3857-3892,共36页
Heart failure prediction is crucial as cardiovascular diseases become the leading cause of death worldwide,exacerbated by the COVID-19 pandemic.Age,cholesterol,and blood pressure datasets are becoming inadequate becau... Heart failure prediction is crucial as cardiovascular diseases become the leading cause of death worldwide,exacerbated by the COVID-19 pandemic.Age,cholesterol,and blood pressure datasets are becoming inadequate because they cannot capture the complexity of emerging health indicators.These high-dimensional and heterogeneous datasets make traditional machine learning methods difficult,and Skewness and other new biomarkers and psychosocial factors bias the model’s heart health prediction across diverse patient profiles.Modern medical datasets’complexity and high dimensionality challenge traditional predictionmodels like SupportVectorMachines and Decision Trees.Quantum approaches include QSVM,QkNN,QDT,and others.These Constraints drove research.The“QHF-CS:Quantum-Enhanced Heart Failure Prediction using Quantum CNN with Optimized Feature Qubit Selection with Cuckoo Search in Skewed Clinical Data”system was developed in this research.This novel system leverages a Quantum Convolutional Neural Network(QCNN)-based quantum circuit,enhanced by meta-heuristic algorithms—Cuckoo SearchOptimization(CSO),Artificial BeeColony(ABC),and Particle SwarmOptimization(PSO)—for feature qubit selection.Among these,CSO demonstrated superior performance by consistently identifying the most optimal and least skewed feature subsets,which were then encoded into quantum states for circuit construction.By integrating advanced quantum circuit feature maps like ZZFeatureMap,RealAmplitudes,and EfficientSU2,the QHF-CS model efficiently processes complex,high-dimensional data,capturing intricate patterns that classical models overlook.The QHF-CS model improves precision,recall,F1-score,and accuracy to 0.94,0.95,0.94,and 0.94.Quantum computing could revolutionize heart failure diagnostics by improving model accuracy and computational efficiency,enabling complex healthcare diagnostic breakthroughs. 展开更多
关键词 Accuracy quantum machine learning heart failure PREDICTION cuckoo search optimization(CSO) skewed clinical data quantum convolutional circuit
在线阅读 下载PDF
Stochastic state of health estimation for lithium-ion batteries with automated feature fusion using quantum convolutional neural network
9
作者 Chen Liang Shengyu Tao +3 位作者 Xinghao Huang Yezhen Wang Bizhong Xia Xuan Zhang 《Journal of Energy Chemistry》 2025年第7期205-219,共15页
The accurate state of health(SOH)estimation of lithium-ion batteries is crucial for efficient,healthy,and safe operation of battery systems.Extracting meaningful aging information from highly stochastic and noisy data... The accurate state of health(SOH)estimation of lithium-ion batteries is crucial for efficient,healthy,and safe operation of battery systems.Extracting meaningful aging information from highly stochastic and noisy data segments while designing SOH estimation algorithms that efficiently handle the large-scale computational demands of cloud-based battery management systems presents a substantial challenge.In this work,we propose a quantum convolutional neural network(QCNN)model designed for accurate,robust,and generalizable SOH estimation with minimal data and parameter requirements and is compatible with quantum computing cloud platforms in the Noisy Intermediate-Scale Quantum.First,we utilize data from 4 datasets comprising 272 cells,covering 5 chemical compositions,4 rated parameters,and 73operating conditions.We design 5 voltage windows as small as 0.3 V for each cell from incremental capacity peaks for stochastic SOH estimation scenarios generation.We extract 3 effective health indicators(HIs)sequences and develop an automated feature fusion method using quantum rotation gate encoding,achieving an R2of 96%.Subsequently,we design a QCNN whose convolutional layer,constructed with variational quantum circuits,comprises merely 39 parameters.Additionally,we explore the impact of training set size,using strategies,and battery materials on the model’s accuracy.Finally,the QCNN with quantum convolutional layers reduces root mean squared error by 28% and achieves an R^(2)exceeding 96% compared to other three commonly used algorithms.This work demonstrates the effectiveness of quantum encoding for automated feature fusion of HIs extracted from limited discharge data.It highlights the potential of QCNN in improving the accuracy,robustness,and generalization of SOH estimation while dealing with stochastic and noisy data with few parameters and simple structure.It also suggests a new paradigm for leveraging quantum computational power in SOH estimation. 展开更多
关键词 Lithium-ion battery State of health Feature fusion quantum convolutional neural network quantum machine learning
在线阅读 下载PDF
Prediction of Solar Irradiation Using Quantum Support Vector Machine Learning Algorithm
10
作者 Makhamisa Senekane Benedict Molibeli Taele 《Smart Grid and Renewable Energy》 2016年第12期293-301,共9页
Classical machine learning, which is at the intersection of artificial intelligence and statistics, investigates and formulates algorithms which can be used to discover patterns in the given data and also make some fo... Classical machine learning, which is at the intersection of artificial intelligence and statistics, investigates and formulates algorithms which can be used to discover patterns in the given data and also make some forecasts based on the given data. Classical machine learning has its quantum part, which is known as quantum machine learning (QML). QML, which is a field of quantum computing, uses some of the quantum mechanical principles and concepts which include superposition, entanglement and quantum adiabatic theorem to assess the data and make some forecasts based on the data. At the present moment, research in QML has taken two main approaches. The first approach involves implementing the computationally expensive subroutines of classical machine learning algorithms on a quantum computer. The second approach concerns using classical machine learning algorithms on a quantum information, to speed up performance of the algorithms. The work presented in this manuscript proposes a quantum support vector algorithm that can be used to forecast solar irradiation. The novelty of this work is in using quantum mechanical principles for application in machine learning. Python programming language was used to simulate the performance of the proposed algorithm on a classical computer. Simulation results that were obtained show the usefulness of this algorithm for predicting solar irradiation. 展开更多
关键词 quantum quantum machine learning machine learning Support Vector machine quantum Support Vector machine ENERGY Solar Irradiation
在线阅读 下载PDF
Practical Meta-Reinforcement Learning of Evolutionary Strategy with Quantum Neural Networks for Stock Trading
11
作者 Erik Sorensen Wei Hu 《Journal of Quantum Information Science》 2020年第3期43-71,共29页
We show the practicality of two existing meta-learning algorithms Model-</span></span><span><span><span> </span></span></span><span><span><span><spa... We show the practicality of two existing meta-learning algorithms Model-</span></span><span><span><span> </span></span></span><span><span><span><span style="font-family:Verdana;">Agnostic Meta-Learning and Fast Context Adaptation Via Meta-learning using an evolutionary strategy for parameter optimization, as well as propose two novel quantum adaptations of those algorithms using continuous quantum neural networks, for learning to trade portfolios of stocks on the stock market. The goal of meta-learning is to train a model on a variety of tasks, such that it can solve new learning tasks using only a small number of training samples. In our classical approach, we trained our meta-learning models on a variety of portfolios that contained 5 randomly sampled Consumer Cyclical stocks from a pool of 60. In our quantum approach, we trained our </span><span style="font-family:Verdana;">quantum meta-learning models on a simulated quantum computer with</span><span style="font-family:Verdana;"> portfolios containing 2 randomly sampled Consumer Cyclical stocks. Our findings suggest that both classical models could learn a new portfolio with 0.01% of the number of training samples to learn the original portfolios and can achieve a comparable performance within 0.1% Return on Investment of the Buy and Hold strategy. We also show that our much smaller quantum meta-learned models with only 60 model parameters and 25 training epochs </span><span style="font-family:Verdana;">have a similar learning pattern to our much larger classical meta-learned</span><span style="font-family:Verdana;"> models that have over 250,000 model parameters and 2500 training epochs. Given these findings</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> we also discuss the benefits of scaling up our experiments from a simulated quantum computer to a real quantum computer. To the best of our knowledge, we are the first to apply the ideas of both classical meta-learning as well as quantum meta-learning to enhance stock trading. 展开更多
关键词 Reinforcement learning Deep learning META-learning Evolutionary Strategy quantum Computing quantum machine learning Stock Market Algorithmic Trading
在线阅读 下载PDF
Analysis of learnability of a novel hybrid quantum-classical convolutional neural network in image classification
12
作者 程涛 赵润盛 +2 位作者 王爽 王睿 马鸿洋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期275-283,共9页
We design a new hybrid quantum-classical convolutional neural network(HQCCNN)model based on parameter quantum circuits.In this model,we use parameterized quantum circuits(PQCs)to redesign the convolutional layer in cl... We design a new hybrid quantum-classical convolutional neural network(HQCCNN)model based on parameter quantum circuits.In this model,we use parameterized quantum circuits(PQCs)to redesign the convolutional layer in classical convolutional neural networks,forming a new quantum convolutional layer to achieve unitary transformation of quantum states,enabling the model to more accurately extract hidden information from images.At the same time,we combine the classical fully connected layer with PQCs to form a new hybrid quantum-classical fully connected layer to further improve the accuracy of classification.Finally,we use the MNIST dataset to test the potential of the HQCCNN.The results indicate that the HQCCNN has good performance in solving classification problems.In binary classification tasks,the classification accuracy of numbers 5 and 7 is as high as 99.71%.In multivariate classification,the accuracy rate also reaches 98.51%.Finally,we compare the performance of the HQCCNN with other models and find that the HQCCNN has better classification performance and convergence speed. 展开更多
关键词 parameterized quantum circuits quantum machine learning hybrid quantum-classical convolutional neural network
原文传递
Optimal Policies for Quantum Markov Decision Processes 被引量:2
13
作者 Ming-Sheng Ying Yuan Feng Sheng-Gang Ying 《International Journal of Automation and computing》 EI CSCD 2021年第3期410-421,共12页
Markov decision process(MDP)offers a general framework for modelling sequential decision making where outcomes are random.In particular,it serves as a mathematical framework for reinforcement learning.This paper intro... Markov decision process(MDP)offers a general framework for modelling sequential decision making where outcomes are random.In particular,it serves as a mathematical framework for reinforcement learning.This paper introduces an extension of MDP,namely quantum MDP(q MDP),that can serve as a mathematical model of decision making about quantum systems.We develop dynamic programming algorithms for policy evaluation and finding optimal policies for q MDPs in the case of finite-horizon.The results obtained in this paper provide some useful mathematical tools for reinforcement learning techniques applied to the quantum world. 展开更多
关键词 quantum Markov decision processes quantum machine learning reinforcement learning dynamic programming decision making
原文传递
Quantum Generative Adversarial Network: A Survey 被引量:2
14
作者 Tong Li Shibin Zhang Jinyue Xia 《Computers, Materials & Continua》 SCIE EI 2020年第7期401-438,共38页
Generative adversarial network(GAN)is one of the most promising methods for unsupervised learning in recent years.GAN works via adversarial training concept and has shown excellent performance in the fields image synt... Generative adversarial network(GAN)is one of the most promising methods for unsupervised learning in recent years.GAN works via adversarial training concept and has shown excellent performance in the fields image synthesis,image super-resolution,video generation,image translation,etc.Compared with classical algorithms,quantum algorithms have their unique advantages in dealing with complex tasks,quantum machine learning(QML)is one of the most promising quantum algorithms with the rapid development of quantum technology.Specifically,Quantum generative adversarial network(QGAN)has shown the potential exponential quantum speedups in terms of performance.Meanwhile,QGAN also exhibits some problems,such as barren plateaus,unstable gradient,model collapse,absent complete scientific evaluation system,etc.How to improve the theory of QGAN and apply it that have attracted some researcher.In this paper,we comprehensively and deeply review recently proposed GAN and QAGN models and their applications,and we discuss the existing problems and future research trends of QGAN. 展开更多
关键词 quantum machine learning generative adversarial network quantum generative adversarial network mode collapse
在线阅读 下载PDF
Quantum Hierarchical Agglomerative Clustering Based on One Dimension Discrete Quantum Walk with Single-Point Phase Defects 被引量:1
15
作者 Gongde Guo Kai Yu +3 位作者 Hui Wang Song Lin Yongzhen Xu Xiaofeng Chen 《Computers, Materials & Continua》 SCIE EI 2020年第11期1397-1409,共13页
As an important branch of machine learning,clustering analysis is widely used in some fields,e.g.,image pattern recognition,social network analysis,information security,and so on.In this paper,we consider the designin... As an important branch of machine learning,clustering analysis is widely used in some fields,e.g.,image pattern recognition,social network analysis,information security,and so on.In this paper,we consider the designing of clustering algorithm in quantum scenario,and propose a quantum hierarchical agglomerative clustering algorithm,which is based on one dimension discrete quantum walk with single-point phase defects.In the proposed algorithm,two nonclassical characters of this kind of quantum walk,localization and ballistic effects,are exploited.At first,each data point is viewed as a particle and performed this kind of quantum walk with a parameter,which is determined by its neighbors.After that,the particles are measured in a calculation basis.In terms of the measurement result,every attribute value of the corresponding data point is modified appropriately.In this way,each data point interacts with its neighbors and moves toward a certain center point.At last,this process is repeated several times until similar data points cluster together and form distinct classes.Simulation experiments on the synthetic and real world data demonstrate the effectiveness of the presented algorithm.Compared with some classical algorithms,the proposed algorithm achieves better clustering results.Moreover,combining quantum cluster assignment method,the presented algorithm can speed up the calculating velocity. 展开更多
关键词 quantum machine learning discrete quantum walk hierarchical agglomerative clustering
在线阅读 下载PDF
Quantum computing in power systems 被引量:5
16
作者 Yifan Zhou Zefan Tang +5 位作者 Nima Nikmehr Pouya Babahajiani Fei Feng Tzu-Chieh Wei Honghao Zheng Peng Zhang 《iEnergy》 2022年第2期170-187,共18页
Electric power systems provide the backbone of modern industrial societies.Enabling scalable grid analytics is the keystone to successfully operating large transmission and distribution systems.However,today’s power ... Electric power systems provide the backbone of modern industrial societies.Enabling scalable grid analytics is the keystone to successfully operating large transmission and distribution systems.However,today’s power systems are suffering from ever-increasing computational burdens in sustaining the expanding communities and deep integration of renewable energy resources,as well as managing huge volumes of data accordingly.These unprecedented challenges call for transformative analytics to support the resilient operations of power systems.Recently,the explosive growth of quantum computing techniques has ignited new hopes of revolutionizing power system computations.Quantum computing harnesses quantum mechanisms to solve traditionally intractable computational problems,which may lead to ultra-scalable and efficient power grid analytics.This paper reviews the newly emerging application of quantum computing techniques in power systems.We present a comprehensive overview of existing quantum-engineered power analytics from different operation perspectives,including static analysis,transient analysis,stochastic analysis,optimization,stability,and control.We thoroughly discuss the related quantum algorithms,their benefits and limitations,hardware implementations,and recommended practices.We also review the quantum networking techniques to ensure secure communication of power systems in the quantum era.Finally,we discuss challenges and future research directions.This paper will hopefully stimulate increasing attention to the development of quantum-engineered smart grids. 展开更多
关键词 quantum computing power system variational quantum algorithms quantum optimization quantum machine learning quantum security
在线阅读 下载PDF
A new method of constructing adversarial examplesfor quantum variational circuits
17
作者 颜金歌 闫丽丽 张仕斌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期268-272,共5页
A quantum variational circuit is a quantum machine learning model similar to a neural network.A crafted adversarial example can lead to incorrect results for the model.Using adversarial examples to train the model wil... A quantum variational circuit is a quantum machine learning model similar to a neural network.A crafted adversarial example can lead to incorrect results for the model.Using adversarial examples to train the model will greatly improve its robustness.The existing method is to use automatic differentials or finite difference to obtain a gradient and use it to construct adversarial examples.This paper proposes an innovative method for constructing adversarial examples of quantum variational circuits.In this method,the gradient can be obtained by measuring the expected value of a quantum bit respectively in a series quantum circuit.This method can be used to construct the adversarial examples for a quantum variational circuit classifier.The implementation results prove the effectiveness of the proposed method.Compared with the existing method,our method requires fewer resources and is more efficient. 展开更多
关键词 quantum variational circuit adversarial examples quantum machine learning quantum circuit
原文传递
Quantum algorithm for neighborhood preserving embedding
18
作者 Shi-Jie Pan Lin-Chun Wan +4 位作者 Hai-Ling Liu Yu-Sen Wu Su-Juan Qin Qiao-Yan Wen Fei Gao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期192-203,共12页
Neighborhood preserving embedding(NPE)is an important linear dimensionality reduction technique that aims at preserving the local manifold structure.NPE contains three steps,i.e.,finding the nearest neighbors of each ... Neighborhood preserving embedding(NPE)is an important linear dimensionality reduction technique that aims at preserving the local manifold structure.NPE contains three steps,i.e.,finding the nearest neighbors of each data point,constructing the weight matrix,and obtaining the transformation matrix.Liang et al.proposed a variational quantum algorithm(VQA)for NPE[Phys.Rev.A 101032323(2020)].The algorithm consists of three quantum sub-algorithms,corresponding to the three steps of NPE,and was expected to have an exponential speedup on the dimensionality n.However,the algorithm has two disadvantages:(i)It is not known how to efficiently obtain the input of the third sub-algorithm from the output of the second one.(ii)Its complexity cannot be rigorously analyzed because the third sub-algorithm in it is a VQA.In this paper,we propose a complete quantum algorithm for NPE,in which we redesign the three sub-algorithms and give a rigorous complexity analysis.It is shown that our algorithm can achieve a polynomial speedup on the number of data points m and an exponential speedup on the dimensionality n under certain conditions over the classical NPE algorithm,and achieve a significant speedup compared to Liang et al.’s algorithm even without considering the complexity of the VQA. 展开更多
关键词 quantum algorithm quantum machine learning amplitude amplification
原文传递
Quantum partial least squares regression algorithm for multiple correlation problem
19
作者 Yan-Yan Hou Jian Li +1 位作者 Xiu-Bo Chen Yuan Tian 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期177-186,共10页
Partial least squares(PLS) regression is an important linear regression method that efficiently addresses the multiple correlation problem by combining principal component analysis and multiple regression. In this pap... Partial least squares(PLS) regression is an important linear regression method that efficiently addresses the multiple correlation problem by combining principal component analysis and multiple regression. In this paper, we present a quantum partial least squares(QPLS) regression algorithm. To solve the high time complexity of the PLS regression, we design a quantum eigenvector search method to speed up principal components and regression parameters construction. Meanwhile, we give a density matrix product method to avoid multiple access to quantum random access memory(QRAM)during building residual matrices. The time and space complexities of the QPLS regression are logarithmic in the independent variable dimension n, the dependent variable dimension w, and the number of variables m. This algorithm achieves exponential speed-ups over the PLS regression on n, m, and w. In addition, the QPLS regression inspires us to explore more potential quantum machine learning applications in future works. 展开更多
关键词 quantum machine learning partial least squares regression eigenvalue decomposition
原文传递
Lifetime Prediction of LiFePO_(4) Batteries Using Multilayer Classical-Quantum Hybrid Classifier
20
作者 Muhammad Haris Muhammad Noman Hasan +1 位作者 Abdul Basit Shiyin Qin 《Journal of Quantum Computing》 2021年第3期89-95,共7页
This article presents a multilayer hybrid classical-quantum classifier for predicting the lifetime of LiFePO_(4) batteries using early degradation data.The multilayer approach uses multiple variational quantum circuit... This article presents a multilayer hybrid classical-quantum classifier for predicting the lifetime of LiFePO_(4) batteries using early degradation data.The multilayer approach uses multiple variational quantum circuits in cascade,which allows more parameters to be used as weights in a single run hence increasing accuracy and provides faster cost function convergence for the optimizer.The proposed classifier predicts with an accuracy of 92.8%using data of the first four cycles.The effectiveness of the hybrid classifier is also presented by validating the performance using untrained data with an accuracy of 84%.We also demonstrate that the proposed classifier outperforms traditional machine learning algorithms in classification accuracy.In this paper,we show the application of quantum machine learning in solving a practical problem.This study will help researchers to apply quantum machine learning algorithms to more complex real-world applications,and reducing the gap between quantum and classical computing. 展开更多
关键词 Classical-quantum CLASSIFIER quantum machine learning classification LiFePO_(4) LITHIUM-ION
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部