期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Quantum Generative Adversarial Network: A Survey 被引量:2
1
作者 Tong Li Shibin Zhang Jinyue Xia 《Computers, Materials & Continua》 SCIE EI 2020年第7期401-438,共38页
Generative adversarial network(GAN)is one of the most promising methods for unsupervised learning in recent years.GAN works via adversarial training concept and has shown excellent performance in the fields image synt... Generative adversarial network(GAN)is one of the most promising methods for unsupervised learning in recent years.GAN works via adversarial training concept and has shown excellent performance in the fields image synthesis,image super-resolution,video generation,image translation,etc.Compared with classical algorithms,quantum algorithms have their unique advantages in dealing with complex tasks,quantum machine learning(QML)is one of the most promising quantum algorithms with the rapid development of quantum technology.Specifically,Quantum generative adversarial network(QGAN)has shown the potential exponential quantum speedups in terms of performance.Meanwhile,QGAN also exhibits some problems,such as barren plateaus,unstable gradient,model collapse,absent complete scientific evaluation system,etc.How to improve the theory of QGAN and apply it that have attracted some researcher.In this paper,we comprehensively and deeply review recently proposed GAN and QAGN models and their applications,and we discuss the existing problems and future research trends of QGAN. 展开更多
关键词 quantum machine learning generative adversarial network quantum generative adversarial network mode collapse
在线阅读 下载PDF
Quantum generative adversarial networks based on a readout error mitigation method with fault tolerant mechanism
2
作者 赵润盛 马鸿洋 +2 位作者 程涛 王爽 范兴奎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期285-295,共11页
Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NIS... Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models. 展开更多
关键词 readout errors quantum generative adversarial networks bit-flip averaging method fault tolerant mechanisms
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部