In this paper,focus has been given to design and implement signed binary subtraction in quantum logic.Since the type of operand may be positive or negative,therefore a novel algorithm has been developed to detect the ...In this paper,focus has been given to design and implement signed binary subtraction in quantum logic.Since the type of operand may be positive or negative,therefore a novel algorithm has been developed to detect the type of operand and as per the selection of the type of operands,separate design techniques have been developed to make the circuit compact and work very efficiently.Two separate methods have been shown in the paper to perform the signed subtraction.The results show promising for the second method in respect of ancillary input count and garbage output count but at the cost of quantum cost.展开更多
A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is...A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is composed of input, phase rotation, aggregation, reversal rotation and output. In this model, the input is described by qubits, and the output is given by the probability of the state in which (1) is observed. The phase rotation and the reversal rotation are performed by the universal quantum gates. Secondly, the quantum BP neural networks model is constructed, in which the output layer and the hide layer are quantum neurons. With the application of the gradient descent algorithm, a learning algorithm of the model is proposed, and the continuity of the model is proved. It is shown that this model and algorithm are superior to the conventional BP networks in three aspects: convergence speed, convergence rate and robustness, by two application examples of pattern recognition and function approximation.展开更多
A kind of new operators, the generalized pseudo-spin operators are introduced and a universad intrinsic Hamiltonian of two-qubit interaction is studied in terms of the generalized pseudo-spin operators. A fundamental ...A kind of new operators, the generalized pseudo-spin operators are introduced and a universad intrinsic Hamiltonian of two-qubit interaction is studied in terms of the generalized pseudo-spin operators. A fundamental quantum gate U(θ) is constructed based on the universal Hamiltonian and shown that the roles of the new quantum gate U (θ) is equivalent, functionally, to the joint operation of Hadamard and C-Not gates.展开更多
Construction of optimal gate operations is significant for quantum computation.Here an efficient scheme is proposed for performing shortcut-based quantum gates on superconducting qubits in circuit quantum electrodynam...Construction of optimal gate operations is significant for quantum computation.Here an efficient scheme is proposed for performing shortcut-based quantum gates on superconducting qubits in circuit quantum electrodynamics(QED).Two four-level artificial atoms of Cooper-pair box circuits,having sufficient level anharmonicity,are placed in a common quantized field of circuit QED and are driven by individual classical microwaves.Without the effect of cross resonance,one-qubit NOT gate and phase gate in a decoupled atom can be implemented using the invariant-based shortcuts to adiabaticity.With the assistance of cavity bus,a one-step SWAP gate can be obtained within a composite qubit-photon-qubit system by inversely engineering the classical drivings.We further consider the gate realizations by adjusting the microwave fields.With the accessible decoherence rates,the shortcut-based gates have high fidelities.The present strategy could offer a promising route towards fast and robust quantum computation with superconducting circuits experimentally.展开更多
Anyons can be used to realize quantum computation, because they are two-level systems in two dimensions. In this paper, we propose a scheme to simulate single-qubit gates and CNOT gate using Abelian anyons in the Kita...Anyons can be used to realize quantum computation, because they are two-level systems in two dimensions. In this paper, we propose a scheme to simulate single-qubit gates and CNOT gate using Abelian anyons in the Kitaev model. Two pairs of anyons (six spins) are used to realize single-qubit gates, while ten spins are needed for the CNOT gate. Based on these quantum gates, we show how to realize the Grover algorithm in a two-qubit system.展开更多
In this paper, we give an efficient physical realization of a double-slit duality quantum gate. Weak cross- Kerr nonlinearity is exploited here. The probability of success can reach 1/2. Asymmetrical slit duality cont...In this paper, we give an efficient physical realization of a double-slit duality quantum gate. Weak cross- Kerr nonlinearity is exploited here. The probability of success can reach 1/2. Asymmetrical slit duality control gate also can be constructed conveniently. The special quantum control gate could be realized easily in optical system by our current experimental technology.展开更多
Harnessing the frequency dimension in integrated photonics offers key advantages in terms of scalability,noise resilience,parallelization,and compatibility with telecom multiplexing techniques.Integrated ring resonato...Harnessing the frequency dimension in integrated photonics offers key advantages in terms of scalability,noise resilience,parallelization,and compatibility with telecom multiplexing techniques.Integrated ring resonators have been used to generate frequency-entangled states through spontaneous four-wave mixing.However,state-of-the-art integrated resonators are limited by trade-offs among size,spectral separation,and efficient photon pair generation.We have developed silicon ring resonators with a footprint below 0.05 mm^(2)providing more than 70 frequency channels separated by 21 GHz.We exploit the narrow frequency separation to parallelize and independently control 34 single qubit-gates with a single set of three off-the-shelf electro-optic devices.We fully characterize 17 frequency-bin maximally entangled qubit pairs by performing quantum state tomography.We demonstrate for the first time,we believe,a fully connected five-user quantum network in the frequency domain.These results are a step towards a generation of quantum circuits implemented with scalable silicon photonics technology,for applications in quantum computing and secure communications.展开更多
Trapped ion hardware has made significant progress recently and is now one of the leading platforms for quantum computing.To construct two-qubit gates in trapped ions,experimentalmanipulation approaches for ion chains...Trapped ion hardware has made significant progress recently and is now one of the leading platforms for quantum computing.To construct two-qubit gates in trapped ions,experimentalmanipulation approaches for ion chains are becoming increasingly prevalent.Given the restricted control technology,how implementing high-fidelity quantum gate operations is crucial.Many works in current pulse design optimization focus on ion–phonon and effective ion–ion couplings while ignoring the first-order derivative terms expansion impacts of these two terms brought on by experiment defects.This paper proposes a novel robust quantum control optimization method in trapped ions.By introducing the first-order derivative terms caused by the error into the optimization cost function,we generate an extremely robust Mølmer–Sørensen gate with infidelity below 10^(−3) under a drift noise range of±10 kHz,the relative robustness achieves a tolerance of±5%,compared to the 200-kHz frequency spacing between phonon modes,and for time noise drift,the tolerance reached to 2%.Our work reveals the vital role of the first-order derivative terms of coupling in trapped ion pulse control optimization,especially the first-order derivative terms of ion–ion coupling.It provides a robust optimization scheme for realizing more efficient entangled states in trapped ion platforms.展开更多
High-fidelity quantum gates are essential for large-scale quantum computation.However,any quantum manipulation will inevitably affected by noises,systematic errors and decoherence effects,which lead to infidelity of a...High-fidelity quantum gates are essential for large-scale quantum computation.However,any quantum manipulation will inevitably affected by noises,systematic errors and decoherence effects,which lead to infidelity of a target quantum task.Therefore,implementing high-fidelity,robust and fast quantum gates is highly desired.Here,we propose a fast and robust scheme to construct high-fidelity holonomic quantum gates for universal quantum computation based on resonant interaction of three-level quantum systems via shortcuts to adiabaticity.In our proposal,the target Hamiltonian to induce noncyclic non-Abelian geometric phases can be inversely engineered with less evolution time and demanding experimentally,leading to high-fidelity quantum gates in a simple setup.Besides,our scheme is readily realizable in physical system currently pursued for implementation of quantum computation.Therefore,our proposal represents a promising way towards fault-tolerant geometric quantum computation.展开更多
One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement ap...One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement approach has been applied to replace classical communication of individual measurement outcomes.In this work,by considering the delayed-measurement approach,we demonstrate a modified one-way CNOT gate using the on-cloud superconducting quantum computing platform:Quafu.The modified protocol for one-way quantum computing requires only three qubits rather than the four used in the standard protocol.Since this modified cluster state decreases the number of physical qubits required to implement one-way computation,both the scalability and complexity of the computing process are improved.Compared to previous work,this modified one-way CNOT gate is superior to the standard one in both fidelity and resource requirements.We have also numerically compared the behavior of standard and modified methods in large-scale one-way quantum computing.Our results suggest that in a noisy intermediate-scale quantum(NISQ)era,the modified method shows a significant advantage for one-way quantum computation.展开更多
The most general duality gates were introduced by Long,Liu and Wang and named allowable generalized quantum gates (AGQGs,for short).By definition,an allowable generalized quantum gate has the form of U=YfkjsckUK,where...The most general duality gates were introduced by Long,Liu and Wang and named allowable generalized quantum gates (AGQGs,for short).By definition,an allowable generalized quantum gate has the form of U=YfkjsckUK,where Uk’s are unitary operators on a Hilbert space H and the coefficients ck’s are complex numbers with |Yfijo ck\ ∧ 1 an d 1ck| 【1 for all k=0,1,...,d-1.In this paper,we prove that an AGQG U=YfkZo ck∧k is realizable,i.e.there are two d by d unitary matrices W and V such that ck=W0kVk0 (0【k【d-1) if and only if YfkJt 1c*|【m that case,the matrices W and V are constructed.展开更多
We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and SWAP gate using a detuned microwave cavity interacting with three-level superconducting-quantum-interference-device (S...We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and SWAP gate using a detuned microwave cavity interacting with three-level superconducting-quantum-interference-device (SQUID) qubit(s), by placing SQUID(s) in a two-mode microwave cavity and using adiabatic passage methods. In this scheme, the two logical states of the qubit are represented by the two lowest levels of the SQUID, and the cavity fields are treated as quantized. Compared with the previous method, the complex procedures of adjusting tile level spacing of the SQUID and applying the resonant microwave pulse to the SQUID to create transformation are not required. Based on superconducting device with relatively long decoherence time and simplified operation procedure, the gates operate at a high speed, which is important in view of decoherence.展开更多
In the system with two two-level ions confined in a linear trap, this paper presents a simple scheme to realize the quantum phase gate (QPG) and the swap gate beyond the Lamb Dicke (LD) limit. These two-qubit quan...In the system with two two-level ions confined in a linear trap, this paper presents a simple scheme to realize the quantum phase gate (QPG) and the swap gate beyond the Lamb Dicke (LD) limit. These two-qubit quantum logic gates only involve the internal states of two trapped ions. The scheme does not use the vibrational mode as the data bus and only requires a single resonant interaction of the ions with the lasers. Neither the LD approximation nor the auxiliary atomic level is needed in the proposed scheme. Thus the scheme is simple and the interaction time is very short, which is important in view of decoherence. The experimental feasibility for achieving this scheme is also discussed.展开更多
We propose a simple and fast scheme to realize a controlled-NOT gate between two trapped ions using a resonant laser pulse. Our scheme allows the Rabi frequency of the laser field to be of the order of the vibrational...We propose a simple and fast scheme to realize a controlled-NOT gate between two trapped ions using a resonant laser pulse. Our scheme allows the Rabi frequency of the laser field to be of the order of the vibrational frequency and thus the time required to complete the operation is greatly shortened, which is of importance in view of decoherence.展开更多
We propose a scheme to produce quantum phase gates for trapped ions. Taking advantage of the adiabatic evolution, the operation is insensitive to small fluctuations of experimental parameters. Furthermore, the sponta...We propose a scheme to produce quantum phase gates for trapped ions. Taking advantage of the adiabatic evolution, the operation is insensitive to small fluctuations of experimental parameters. Furthermore, the spontaneous emission is suppressed since the ions have no probability of being populated in the electronic excited states.展开更多
A scheme is presented for realizing quantum logic gates for two atoms localized in two distant optical cavities. Our scheme works in a regime in which the atom-cavity coupling strength is smaller than the cavity decay...A scheme is presented for realizing quantum logic gates for two atoms localized in two distant optical cavities. Our scheme works in a regime in which the atom-cavity coupling strength is smaller than the cavity decay rate. Thus the requirement on the quality factor of the cavities is greatly relaxed. Furthermore, the fidelity of our scheme is not affected by detection inefficiency and atomic decay. These advantages are important in view of experiment.展开更多
We propose a scheme for implementing conditional quantum phase gates for two four-state atoms trapped in a cavity. The two ground states of the atoms are coupled through two Raman processes induced by the cavity mode ...We propose a scheme for implementing conditional quantum phase gates for two four-state atoms trapped in a cavity. The two ground states of the atoms are coupled through two Raman processes induced by the cavity mode and two classical fields. Under certain conditions nonresonant Raman processes lead to two-atom coupling and can be used to produce conditional phase gates. The scheme is insensitive to cavity decay, thermal photons, and atomic spontaneous emission. The scheme does not require individual addressing of the atoms.展开更多
A scheme is presented for realizing an N-qubit quantum phase gate with trapped ions. Taking advantage of the virtual excitation of the vibrational mode, the qubit system undergoes a full-cycle of Rabi oscillation in t...A scheme is presented for realizing an N-qubit quantum phase gate with trapped ions. Taking advantage of the virtual excitation of the vibrational mode, the qubit system undergoes a full-cycle of Rabi oscillation in the selective symmetric Dicke subspace. The scheme only involves a single step and the operation is insensitive to thermal motion. Moreover, the scheme does not require individual addresing of the ions.展开更多
Quantum teleportation as the key strategy for quantum communication requires pure maximally shared entangled states among quantum nodes.In practice,quantum decoherence drastically degrades the shared entanglement duri...Quantum teleportation as the key strategy for quantum communication requires pure maximally shared entangled states among quantum nodes.In practice,quantum decoherence drastically degrades the shared entanglement during entanglement distribution,which is a serious challenge for the development of quantum networks.However,most of the decoherence control strategies proposed thus far are either resource-intensive or time-consuming.To overcome this obstacle,we enable noise-resistant teleportation through a noisy channel with a limited number of qubits and without applying time-consuming weak measurements.We apply a quantum gate control unit consisting of a controlled NOT gate and a rotation gate after the original teleportation protocol is accomplished.Furthermore,we demonstrate that a teleportation fidelity of unity is attainable when environment-assisted measurement is added to the proposed teleportation protocol via quantum gates.Moreover,we present an entanglement distribution process by employing the designed quantum gate control unit followed by the deterministic standard teleportation protocol to improve teleportation fidelity by establishing improved shared entanglement.Our performance analysis indicates that the proposed teleportation schemes offer a competitive fidelity and success probability compared with the conventional schemes and a recent weak measurement-based teleportation protocol.展开更多
In the field of quantum information,the acquisition of information for unknown quantum states is very important.When we only need to obtain specific elements of a state density matrix,the traditional quantum state tom...In the field of quantum information,the acquisition of information for unknown quantum states is very important.When we only need to obtain specific elements of a state density matrix,the traditional quantum state tomography will become very complicated,because it requires a global quantum state reconstruction.Direct measurement of the quantum state allows us to obtain arbitrary specific matrix elements of the quantum state without state reconstruction,so direct measurement schemes have obtained extensive attention.Recently,some direct measurement schemes based on weak values have been proposed,but extra auxiliary states in these schemes are necessary and it will increase the complexity of the practical experiment.Meanwhile,the post-selection process in the scheme will reduce the utilization of resources.In order to avoid these disadvantages,a direct measurement scheme without auxiliary states is proposed in this paper.In this scheme,we achieve the direct measurement of quantum states by using quantum circuits,then we extend it to the measurement of general multi-particle states and complete the error analysis.Finally,when we take into account the dephasing of the quantum states,we modify the circuits and the modified circuits still work for the dephasing case.展开更多
文摘In this paper,focus has been given to design and implement signed binary subtraction in quantum logic.Since the type of operand may be positive or negative,therefore a novel algorithm has been developed to detect the type of operand and as per the selection of the type of operands,separate design techniques have been developed to make the circuit compact and work very efficiently.Two separate methods have been shown in the paper to perform the signed subtraction.The results show promising for the second method in respect of ancillary input count and garbage output count but at the cost of quantum cost.
基金the National Natural Science Foundation of China (50138010)
文摘A quantum BP neural networks model with learning algorithm is proposed. First, based on the universality of single qubit rotation gate and two-qubit controlled-NOT gate, a quantum neuron model is constructed, which is composed of input, phase rotation, aggregation, reversal rotation and output. In this model, the input is described by qubits, and the output is given by the probability of the state in which (1) is observed. The phase rotation and the reversal rotation are performed by the universal quantum gates. Secondly, the quantum BP neural networks model is constructed, in which the output layer and the hide layer are quantum neurons. With the application of the gradient descent algorithm, a learning algorithm of the model is proposed, and the continuity of the model is proved. It is shown that this model and algorithm are superior to the conventional BP networks in three aspects: convergence speed, convergence rate and robustness, by two application examples of pattern recognition and function approximation.
基金The project supported by National Natural Science Foundation of China under Grant No. 60472017
文摘A kind of new operators, the generalized pseudo-spin operators are introduced and a universad intrinsic Hamiltonian of two-qubit interaction is studied in terms of the generalized pseudo-spin operators. A fundamental quantum gate U(θ) is constructed based on the universal Hamiltonian and shown that the roles of the new quantum gate U (θ) is equivalent, functionally, to the joint operation of Hadamard and C-Not gates.
基金Project supported by the Natural Science Foundation of Henan Province,China (Grant No. 212300410388)the “316” Project Plan of Xuchang University
文摘Construction of optimal gate operations is significant for quantum computation.Here an efficient scheme is proposed for performing shortcut-based quantum gates on superconducting qubits in circuit quantum electrodynamics(QED).Two four-level artificial atoms of Cooper-pair box circuits,having sufficient level anharmonicity,are placed in a common quantized field of circuit QED and are driven by individual classical microwaves.Without the effect of cross resonance,one-qubit NOT gate and phase gate in a decoupled atom can be implemented using the invariant-based shortcuts to adiabaticity.With the assistance of cavity bus,a one-step SWAP gate can be obtained within a composite qubit-photon-qubit system by inversely engineering the classical drivings.We further consider the gate realizations by adjusting the microwave fields.With the accessible decoherence rates,the shortcut-based gates have high fidelities.The present strategy could offer a promising route towards fast and robust quantum computation with superconducting circuits experimentally.
基金Supported by the National Natural Science Foundation of China under Grant No. 10874098the National Basic Research Program of China under Grant Nos. 2009CB929402, 2011CB9216002the Specialized Research Fund for the Doctoral Program of Education Ministry of China under Grant No. 20060003048
文摘Anyons can be used to realize quantum computation, because they are two-level systems in two dimensions. In this paper, we propose a scheme to simulate single-qubit gates and CNOT gate using Abelian anyons in the Kitaev model. Two pairs of anyons (six spins) are used to realize single-qubit gates, while ten spins are needed for the CNOT gate. Based on these quantum gates, we show how to realize the Grover algorithm in a two-qubit system.
基金Supported by National Natural Science Foundation of China under Grant Nos.10775076 and 10874098the National Basic Research Program of China under Grant No.2009CB929402the Specialized Research Fund for the Doctoral Program of Education Ministry of China under Grant No.20060003048
文摘In this paper, we give an efficient physical realization of a double-slit duality quantum gate. Weak cross- Kerr nonlinearity is exploited here. The probability of success can reach 1/2. Asymmetrical slit duality control gate also can be constructed conveniently. The special quantum control gate could be realized easily in optical system by our current experimental technology.
基金supported by Region Ile-de-France in the framework of DIM SIRTEQthe European Union’s Horizon 2020 research under the Marie Skłodowska-Curie(Grant No.800306)
文摘Harnessing the frequency dimension in integrated photonics offers key advantages in terms of scalability,noise resilience,parallelization,and compatibility with telecom multiplexing techniques.Integrated ring resonators have been used to generate frequency-entangled states through spontaneous four-wave mixing.However,state-of-the-art integrated resonators are limited by trade-offs among size,spectral separation,and efficient photon pair generation.We have developed silicon ring resonators with a footprint below 0.05 mm^(2)providing more than 70 frequency channels separated by 21 GHz.We exploit the narrow frequency separation to parallelize and independently control 34 single qubit-gates with a single set of three off-the-shelf electro-optic devices.We fully characterize 17 frequency-bin maximally entangled qubit pairs by performing quantum state tomography.We demonstrate for the first time,we believe,a fully connected five-user quantum network in the frequency domain.These results are a step towards a generation of quantum circuits implemented with scalable silicon photonics technology,for applications in quantum computing and secure communications.
文摘Trapped ion hardware has made significant progress recently and is now one of the leading platforms for quantum computing.To construct two-qubit gates in trapped ions,experimentalmanipulation approaches for ion chains are becoming increasingly prevalent.Given the restricted control technology,how implementing high-fidelity quantum gate operations is crucial.Many works in current pulse design optimization focus on ion–phonon and effective ion–ion couplings while ignoring the first-order derivative terms expansion impacts of these two terms brought on by experiment defects.This paper proposes a novel robust quantum control optimization method in trapped ions.By introducing the first-order derivative terms caused by the error into the optimization cost function,we generate an extremely robust Mølmer–Sørensen gate with infidelity below 10^(−3) under a drift noise range of±10 kHz,the relative robustness achieves a tolerance of±5%,compared to the 200-kHz frequency spacing between phonon modes,and for time noise drift,the tolerance reached to 2%.Our work reveals the vital role of the first-order derivative terms of coupling in trapped ion pulse control optimization,especially the first-order derivative terms of ion–ion coupling.It provides a robust optimization scheme for realizing more efficient entangled states in trapped ion platforms.
基金This work was supported by the Key R&D Program of Guangdong Province(Grant No.2018B030326001)the National Natural Science Foundation of China(Grant No.11874156)Science and Technology Program of Guangzhou(Grant No.2019050001).
文摘High-fidelity quantum gates are essential for large-scale quantum computation.However,any quantum manipulation will inevitably affected by noises,systematic errors and decoherence effects,which lead to infidelity of a target quantum task.Therefore,implementing high-fidelity,robust and fast quantum gates is highly desired.Here,we propose a fast and robust scheme to construct high-fidelity holonomic quantum gates for universal quantum computation based on resonant interaction of three-level quantum systems via shortcuts to adiabaticity.In our proposal,the target Hamiltonian to induce noncyclic non-Abelian geometric phases can be inversely engineered with less evolution time and demanding experimentally,leading to high-fidelity quantum gates in a simple setup.Besides,our scheme is readily realizable in physical system currently pursued for implementation of quantum computation.Therefore,our proposal represents a promising way towards fault-tolerant geometric quantum computation.
基金the valuable discussions.Project supported by the National Natural Science Foundation of China(Grant Nos.92265207 and T2121001)Beijing Natural Science Foundation(Grant No.Z200009).
文摘One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement approach has been applied to replace classical communication of individual measurement outcomes.In this work,by considering the delayed-measurement approach,we demonstrate a modified one-way CNOT gate using the on-cloud superconducting quantum computing platform:Quafu.The modified protocol for one-way quantum computing requires only three qubits rather than the four used in the standard protocol.Since this modified cluster state decreases the number of physical qubits required to implement one-way computation,both the scalability and complexity of the computing process are improved.Compared to previous work,this modified one-way CNOT gate is superior to the standard one in both fidelity and resource requirements.We have also numerically compared the behavior of standard and modified methods in large-scale one-way quantum computing.Our results suggest that in a noisy intermediate-scale quantum(NISQ)era,the modified method shows a significant advantage for one-way quantum computation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10571113 and 10871224)the Natural Science Research Program of Shaanxi Province (Grant No. 2009JM1011)
文摘The most general duality gates were introduced by Long,Liu and Wang and named allowable generalized quantum gates (AGQGs,for short).By definition,an allowable generalized quantum gate has the form of U=YfkjsckUK,where Uk’s are unitary operators on a Hilbert space H and the coefficients ck’s are complex numbers with |Yfijo ck\ ∧ 1 an d 1ck| 【1 for all k=0,1,...,d-1.In this paper,we prove that an AGQG U=YfkZo ck∧k is realizable,i.e.there are two d by d unitary matrices W and V such that ck=W0kVk0 (0【k【d-1) if and only if YfkJt 1c*|【m that case,the matrices W and V are constructed.
文摘We present a scheme to realize the basic two-qubit logic gates such as the quantum phase gate and SWAP gate using a detuned microwave cavity interacting with three-level superconducting-quantum-interference-device (SQUID) qubit(s), by placing SQUID(s) in a two-mode microwave cavity and using adiabatic passage methods. In this scheme, the two logical states of the qubit are represented by the two lowest levels of the SQUID, and the cavity fields are treated as quantized. Compared with the previous method, the complex procedures of adjusting tile level spacing of the SQUID and applying the resonant microwave pulse to the SQUID to create transformation are not required. Based on superconducting device with relatively long decoherence time and simplified operation procedure, the gates operate at a high speed, which is important in view of decoherence.
基金Project supported by the Important Program of Hunan Provincial Education Department (Grant No 06A038)Department of Education of Hunan Province (Grant No 06C080)+1 种基金Natural Science Foundation of Hunan Province, China (Grant No 07JJ3013)Postdoctoral Fund of China (Grant No 20070420825)
文摘In the system with two two-level ions confined in a linear trap, this paper presents a simple scheme to realize the quantum phase gate (QPG) and the swap gate beyond the Lamb Dicke (LD) limit. These two-qubit quantum logic gates only involve the internal states of two trapped ions. The scheme does not use the vibrational mode as the data bus and only requires a single resonant interaction of the ions with the lasers. Neither the LD approximation nor the auxiliary atomic level is needed in the proposed scheme. Thus the scheme is simple and the interaction time is very short, which is important in view of decoherence. The experimental feasibility for achieving this scheme is also discussed.
基金The project supported by Fok Ying Tung Education Foundation under Grant No.81008+4 种基金National Natural Science Foundation of China under Grant No.60008003Natural Science Foundation of Fujian Province of China under Grant Nos.K20004 and F0110027the Funds from Fuzhou University
文摘We propose a simple and fast scheme to realize a controlled-NOT gate between two trapped ions using a resonant laser pulse. Our scheme allows the Rabi frequency of the laser field to be of the order of the vibrational frequency and thus the time required to complete the operation is greatly shortened, which is of importance in view of decoherence.
基金The project supported by National Natural Science Foundation of China under Grant No. 10674025 and the Funds from Fuzhou University
文摘We propose a scheme to produce quantum phase gates for trapped ions. Taking advantage of the adiabatic evolution, the operation is insensitive to small fluctuations of experimental parameters. Furthermore, the spontaneous emission is suppressed since the ions have no probability of being populated in the electronic excited states.
基金supported by the Doctoral Foundation of the Ministry of Education of China(Grant No 20070386002)
文摘A scheme is presented for realizing quantum logic gates for two atoms localized in two distant optical cavities. Our scheme works in a regime in which the atom-cavity coupling strength is smaller than the cavity decay rate. Thus the requirement on the quality factor of the cavities is greatly relaxed. Furthermore, the fidelity of our scheme is not affected by detection inefficiency and atomic decay. These advantages are important in view of experiment.
基金supported by the National Natural Science Foundation of China (Grant No 10674025)the Doctoral Foundation of the Ministry of Education of China (Grant No 20070386002)
文摘We propose a scheme for implementing conditional quantum phase gates for two four-state atoms trapped in a cavity. The two ground states of the atoms are coupled through two Raman processes induced by the cavity mode and two classical fields. Under certain conditions nonresonant Raman processes lead to two-atom coupling and can be used to produce conditional phase gates. The scheme is insensitive to cavity decay, thermal photons, and atomic spontaneous emission. The scheme does not require individual addressing of the atoms.
基金Supported by the National Natural Science Foundation of China under Grant No.10974028the Doctoral Foundation of the Ministry of Education of China under Grant No.20093514110009the Natural Science Foundation of Fujian Province under Grant No.2009J06002
文摘A scheme is presented for realizing an N-qubit quantum phase gate with trapped ions. Taking advantage of the virtual excitation of the vibrational mode, the qubit system undergoes a full-cycle of Rabi oscillation in the selective symmetric Dicke subspace. The scheme only involves a single step and the operation is insensitive to thermal motion. Moreover, the scheme does not require individual addresing of the ions.
基金supported by the National Natural Science Foundation of China under grant no.61973290Ministry of Science and Technology of P.R.China Program under the grant no.QN2022200007L。
文摘Quantum teleportation as the key strategy for quantum communication requires pure maximally shared entangled states among quantum nodes.In practice,quantum decoherence drastically degrades the shared entanglement during entanglement distribution,which is a serious challenge for the development of quantum networks.However,most of the decoherence control strategies proposed thus far are either resource-intensive or time-consuming.To overcome this obstacle,we enable noise-resistant teleportation through a noisy channel with a limited number of qubits and without applying time-consuming weak measurements.We apply a quantum gate control unit consisting of a controlled NOT gate and a rotation gate after the original teleportation protocol is accomplished.Furthermore,we demonstrate that a teleportation fidelity of unity is attainable when environment-assisted measurement is added to the proposed teleportation protocol via quantum gates.Moreover,we present an entanglement distribution process by employing the designed quantum gate control unit followed by the deterministic standard teleportation protocol to improve teleportation fidelity by establishing improved shared entanglement.Our performance analysis indicates that the proposed teleportation schemes offer a competitive fidelity and success probability compared with the conventional schemes and a recent weak measurement-based teleportation protocol.
基金supported by National Natural Science Foundation of China(62075049)and(61701139)
文摘In the field of quantum information,the acquisition of information for unknown quantum states is very important.When we only need to obtain specific elements of a state density matrix,the traditional quantum state tomography will become very complicated,because it requires a global quantum state reconstruction.Direct measurement of the quantum state allows us to obtain arbitrary specific matrix elements of the quantum state without state reconstruction,so direct measurement schemes have obtained extensive attention.Recently,some direct measurement schemes based on weak values have been proposed,but extra auxiliary states in these schemes are necessary and it will increase the complexity of the practical experiment.Meanwhile,the post-selection process in the scheme will reduce the utilization of resources.In order to avoid these disadvantages,a direct measurement scheme without auxiliary states is proposed in this paper.In this scheme,we achieve the direct measurement of quantum states by using quantum circuits,then we extend it to the measurement of general multi-particle states and complete the error analysis.Finally,when we take into account the dephasing of the quantum states,we modify the circuits and the modified circuits still work for the dephasing case.