We investigate a two=level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of t...We investigate a two=level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity. We also find that the stationary quantum discord can be increased by applying a classical driving field. Furthermore, we explore the quantum discord dynamics of two identical non=interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence. Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.展开更多
In our recent work we showed, by investigating the initialization of some unusual forms of assisted driving Hamiltonians, that the addition of an assisted driving Hamiltonian is not always useful in quantum adiabatic ...In our recent work we showed, by investigating the initialization of some unusual forms of assisted driving Hamiltonians, that the addition of an assisted driving Hamiltonian is not always useful in quantum adiabatic evolution. These unusual forms are those that are not the relatively fixed ones that are widely used in the literature. In this paper, we continue this study, providing further evidence for the validity of the conclusion above by researching some relatively more complex forms of assisted driving scheme, which generalize the ones studied in our previous work.展开更多
The driving voltage of an organic light-emitting diode(OLED) is lowered by employing molybdenum trioxide(MoO3)/N,N'-bis(naphthalene-1-yl)-N,N'-bis(phe-nyl)-benzidine(NPB) multiple quantum well(MQW) struc...The driving voltage of an organic light-emitting diode(OLED) is lowered by employing molybdenum trioxide(MoO3)/N,N'-bis(naphthalene-1-yl)-N,N'-bis(phe-nyl)-benzidine(NPB) multiple quantum well(MQW) structure in the hole transport layer.For the device with double quantum well(DQW) structure of ITO/[MoO3(2.5 nm)/NPB(20 nm)]2/Alq3(50 nm)/LiF(0.8 nm)/Al(120 nm)],the turn-on voltage is reduced to 2.8 V,which is lowered by 0.4 V compared with that of the control device(without MQW structures),and the driving voltage is 5.6 V,which is reduced by 1 V compared with that of the control device at the 1000 cd/m2.In this work,the enhancement of the injection and transport ability for holes could reduce the driving voltage for the device with MQW structure,which is attributed not only to the reduced energy barrier between ITO and NPB,but also to the forming charge transfer complex between MoO3 and NPB induced by the interfacial doping effect of MoO3.展开更多
The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics...The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics of quantum coherence and quantum entanglement. It is shown that the atomic coherence can be improved or even maintained by the classical driving field, the non-Markovian effect, and the atom-reservoir detuning. The interconversion between the atomic coherence and the atom-reservoir entanglement exists and can be controlled by the appropriate conditions. The conservation of coherence for different partitions is explored, and the dynamics of a system with two-photon excitations is different from the case of single-photon excitation.展开更多
We apply the transitionless driving on the local adiabatic quantum search algorithm to speed up the adiabatic process. By studying quantum dynamics of the adiabatic search algorithm with the equivalent two-level syste...We apply the transitionless driving on the local adiabatic quantum search algorithm to speed up the adiabatic process. By studying quantum dynamics of the adiabatic search algorithm with the equivalent two-level system, we derive the transi- tionless driving Hamiltonian for the local adiabatic quantum search algorithm. We found that when adding a transitionless quantum driving term Ht~ (t) on the local adiabatic quantum search algorithm, the success rate is 1 exactly with arbitrary evolution time by solving the time-dependent Schr6dinger equation in eigen-picture. Moreover, we show the reason for the drastic decrease of the evolution time is that the driving Hamiltonian increases the lowest eigenvalues to a maximum of展开更多
We propose a new scheme on modulating the lasing performance of a quantum dot-cavity system. Compared to the conventional above-band pump, in our new scheme an additional resonant driving field is applied on the quant...We propose a new scheme on modulating the lasing performance of a quantum dot-cavity system. Compared to the conventional above-band pump, in our new scheme an additional resonant driving field is applied on the quantum dot-cavity system. By employing the master equation theory and the Jaynes-Cummings model, we are able to study the interesting phenomenon of the coupling system. To compare the different behaviors between using our new scheme and the conventional method,we carry out investigatioin for both the 'good system'and 'more realistic system', characterizing several important parameters, such as the cavity population, exciton population and the second-order correlation function at zero time delay. Through numerical simulations,we demonstrate that for both the good system and more realistic system, their lasing regimes can be displaced into other regimes in the presence of a resonant driving field.展开更多
基金Project supported by National Natural Science Foundation of China (Grant No. 10774143)
文摘We investigate a two=level atom interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence and find that a stationary quantum discord can arise in the interaction of the atom and cavity field as the time turns to infinity. We also find that the stationary quantum discord can be increased by applying a classical driving field. Furthermore, we explore the quantum discord dynamics of two identical non=interacting two-level atoms independently interacting with a quantized cavity field and a classical driving field in the presence of phase decoherence. Results show that the quantum discord between two atoms is more robust than entanglement under phase decoherence and the classical driving field can help to improve the amount of quantum discord of the two atoms.
基金Project supported by the China Postdoctoral Science Foundation(Grant No.2017M620322)the National Natural Science Foundation of China(Grant No.61402188)+1 种基金Priority for the Postdoctoral Scientific and Technological Program of Hubei Province,China in 2017the Science and Technology Program of Shenzhen of China(Grant Nos.JCYJ 20170818160208570 and JCYJ 20170307160458368)
文摘In our recent work we showed, by investigating the initialization of some unusual forms of assisted driving Hamiltonians, that the addition of an assisted driving Hamiltonian is not always useful in quantum adiabatic evolution. These unusual forms are those that are not the relatively fixed ones that are widely used in the literature. In this paper, we continue this study, providing further evidence for the validity of the conclusion above by researching some relatively more complex forms of assisted driving scheme, which generalize the ones studied in our previous work.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60906022 and 60676051)the Natural Science Foundation of Tianjin,China (Grant No. 10JCYBJC01100)+1 种基金the Scientific Developing Foundation of Tianjin Education Commission,China (Grant No. 2011ZD02)the Jiangsu Natural Science Development Foundation for University,China (Grant No. 09KJB140006)
文摘The driving voltage of an organic light-emitting diode(OLED) is lowered by employing molybdenum trioxide(MoO3)/N,N'-bis(naphthalene-1-yl)-N,N'-bis(phe-nyl)-benzidine(NPB) multiple quantum well(MQW) structure in the hole transport layer.For the device with double quantum well(DQW) structure of ITO/[MoO3(2.5 nm)/NPB(20 nm)]2/Alq3(50 nm)/LiF(0.8 nm)/Al(120 nm)],the turn-on voltage is reduced to 2.8 V,which is lowered by 0.4 V compared with that of the control device(without MQW structures),and the driving voltage is 5.6 V,which is reduced by 1 V compared with that of the control device at the 1000 cd/m2.In this work,the enhancement of the injection and transport ability for holes could reduce the driving voltage for the device with MQW structure,which is attributed not only to the reduced energy barrier between ITO and NPB,but also to the forming charge transfer complex between MoO3 and NPB induced by the interfacial doping effect of MoO3.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675115,11204156,11574178,11304179,and 11647172)the Science and Technology Plan Projects of Shandong University,China(Grant No.J16LJ52)
文摘The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics of quantum coherence and quantum entanglement. It is shown that the atomic coherence can be improved or even maintained by the classical driving field, the non-Markovian effect, and the atom-reservoir detuning. The interconversion between the atomic coherence and the atom-reservoir entanglement exists and can be controlled by the appropriate conditions. The conservation of coherence for different partitions is explored, and the dynamics of a system with two-photon excitations is different from the case of single-photon excitation.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)the National Natural Science Foundation of China(Grant Nos.11504430 and 61502526)
文摘We apply the transitionless driving on the local adiabatic quantum search algorithm to speed up the adiabatic process. By studying quantum dynamics of the adiabatic search algorithm with the equivalent two-level system, we derive the transi- tionless driving Hamiltonian for the local adiabatic quantum search algorithm. We found that when adding a transitionless quantum driving term Ht~ (t) on the local adiabatic quantum search algorithm, the success rate is 1 exactly with arbitrary evolution time by solving the time-dependent Schr6dinger equation in eigen-picture. Moreover, we show the reason for the drastic decrease of the evolution time is that the driving Hamiltonian increases the lowest eigenvalues to a maximum of
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274178,61475197 and 61590932the Natural Science Foundation of the Jiangsu Higher Education Institutions under Grant No 15KJA120002+1 种基金the outstanding Youth Project of Jiangsu Province under Grant No BK20150039the Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No YX002001
文摘We propose a new scheme on modulating the lasing performance of a quantum dot-cavity system. Compared to the conventional above-band pump, in our new scheme an additional resonant driving field is applied on the quantum dot-cavity system. By employing the master equation theory and the Jaynes-Cummings model, we are able to study the interesting phenomenon of the coupling system. To compare the different behaviors between using our new scheme and the conventional method,we carry out investigatioin for both the 'good system'and 'more realistic system', characterizing several important parameters, such as the cavity population, exciton population and the second-order correlation function at zero time delay. Through numerical simulations,we demonstrate that for both the good system and more realistic system, their lasing regimes can be displaced into other regimes in the presence of a resonant driving field.