期刊文献+
共找到1,503篇文章
< 1 2 76 >
每页显示 20 50 100
Existence of Global Attractor for the One-Dimensional Bipolar Quantum Drift-Diffusion Model 被引量:1
1
作者 LIU Yannan SUN Wenlong LI Yeping 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第4期277-282,共6页
In this paper, we investigate a one-dimensional bipolar quantum drift-diffusion model from semiconductor devices. We mainly show the long-time behavior of solutions to the one-dimensional bipolar quantum drift-diffusi... In this paper, we investigate a one-dimensional bipolar quantum drift-diffusion model from semiconductor devices. We mainly show the long-time behavior of solutions to the one-dimensional bipolar quantum drift-diffusion model in a bounded domain. That is, we prove the existence of the global attractor for the solution. 展开更多
关键词 bipolar quantum drift-diffusion model globalattractor energy estimate
原文传递
SEMICLASSICAL LIMIT FOR BIPOLAR QUANTUM DRIFT-DIFFUSION MODEL 被引量:4
2
作者 琚强昌 陈丽 《Acta Mathematica Scientia》 SCIE CSCD 2009年第2期285-293,共9页
Semiclassical limit to the solution of transient bipolar quantum drift-diffusion model in semiconductor simulation is discussed. It is proved that the semiclassical limit of this solution satisfies the classical bipol... Semiclassical limit to the solution of transient bipolar quantum drift-diffusion model in semiconductor simulation is discussed. It is proved that the semiclassical limit of this solution satisfies the classical bipolar drift-diffusion model. In addition, the authors also prove the existence of weak solution. 展开更多
关键词 quantum drift-diffusion weak solution semiclassical limit BIPOLAR
在线阅读 下载PDF
Asymptotic Behavior of Solutions of the Bipolar Quantum Drift-Diffusion Model in the Quarter Plane
3
作者 LIU fang LI Yeping 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第6期467-473,共7页
In this study, we consider the one-dimensional bipolar quantum drift-diffusion model, which consists of the coupled nonlinear fourth-order parabolic equation and the electric field equation. We first show the global e... In this study, we consider the one-dimensional bipolar quantum drift-diffusion model, which consists of the coupled nonlinear fourth-order parabolic equation and the electric field equation. We first show the global existence of the strong solution of the initial boundary value problem in the quarter plane. Moreover, we show the self-similarity property of the strong solution of the bipolar quantum drift-diffusion model in the large time. Namely, we show the unique global strong solution with strictly positive density to the initial boundary value problem of the quantum drift-diffusion model, which in large time, tends to have a self-similar wave at an algebraic time-decay rate. We prove them in an energy method. 展开更多
关键词 ASYMPTOTIC behavior quantum drift-diffusion model SELF-SIMILAR wave energy ESTIMATE
原文传递
A POSITIVITY-PRESERVING FINITE ELEMENT METHOD FOR QUANTUM DRIFT-DIFFUSION MODEL
4
作者 Pengcong Mu Weiying Zheng 《Journal of Computational Mathematics》 SCIE CSCD 2023年第5期909-932,共24页
In this paper,we propose a positivity-preserving finite element method for solving the three-dimensional quantum drift-diffusion model.The model consists of five nonlinear elliptic equations,and two of them describe q... In this paper,we propose a positivity-preserving finite element method for solving the three-dimensional quantum drift-diffusion model.The model consists of five nonlinear elliptic equations,and two of them describe quantum corrections for quasi-Fermi levels.We propose an interpolated-exponential finite element(IEFE)method for solving the two quantum-correction equations.The IEFE method always yields positive carrier densities and preserves the positivity of second-order differential operators in the Newton linearization of quantum-correction equations.Moreover,we solve the two continuity equations with the edge-averaged finite element(EAFE)method to reduce numerical oscillations of quasi-Fermi levels.The Poisson equation of electrical potential is solved with standard Lagrangian finite elements.We prove the existence of solution to the nonlinear discrete problem by using a fixed-point iteration and solving the minimum problem of a new discrete functional.A Newton method is proposed to solve the nonlinear discrete problem.Numerical experiments for a three-dimensional nano-scale FinFET device show that the Newton method is robust for source-to-gate bias voltages up to 9V and source-to-drain bias voltages up to 10V. 展开更多
关键词 quantum drift-diffusion model Positivity-preserving finite element method Newton method FinFET device High bias voltage
原文传递
The Existence and Long-Time Behavior of Weak Solution to Bipolar Quantum Drift-Diffusion Model 被引量:7
5
作者 Xiuqing CHEN Li CHEN Huaiyu JIAN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2007年第6期651-664,共14页
The authors study the existence and long-time behavior of weak solutions to the bipolar transient quantum drift-diffusion model,a fourth order parabolic system.Using semi-discretization in time and entropy estimate,th... The authors study the existence and long-time behavior of weak solutions to the bipolar transient quantum drift-diffusion model,a fourth order parabolic system.Using semi-discretization in time and entropy estimate,the authors get the global existence of nonnegative weak solutions to the one-dimensional model with nonnegative initial and homogenous Neumann(or periodic)boundary conditions.Furthermore,by a logarithmic Sobolev inequality,it is proved that the periodic weak solution exponentially approaches its mean value as time increases to infinity. 展开更多
关键词 quantum drift-diffusion Weak solution Long-time behavior
原文传递
The Bipolar Quantum Drift-diffusion Model 被引量:5
6
作者 Xiu Qing CHEN Li CHEN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第4期617-638,共22页
A fourth order parabolic system, the bipolar quantum drift-diffusion model in semiconductor simulation, with physically motivated Dirichlet-Neumann boundary condition is studied in this paper. By semidiscretization in... A fourth order parabolic system, the bipolar quantum drift-diffusion model in semiconductor simulation, with physically motivated Dirichlet-Neumann boundary condition is studied in this paper. By semidiscretization in time and compactness argument, the global existence and semiclassical limit are obtained, in which semiclassieal limit describes the relation between quantum and classical drift-diffusion models, Furthermore, in the case of constant doping, we prove the weak solution exponentially approaches its constant steady state as time increases to infinity. 展开更多
关键词 quantum drift-diffusion fourth order parabolic system weak solution semiclassical limit exponential decay
原文传递
The Semiclassical Limit in the Quantum Drift-Diffusion Model
7
作者 Qiang Chang JU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第2期253-264,共12页
Semiclassical limit to the solution of isentropic quantum drift-diffusion model in semicon- ductor simulation is discussed. It is proved that the semiclassical limit of this solution satisfies the classical drift-diff... Semiclassical limit to the solution of isentropic quantum drift-diffusion model in semicon- ductor simulation is discussed. It is proved that the semiclassical limit of this solution satisfies the classical drift-diffusion model. In addition, we also proved the global existence of weak solutions. 展开更多
关键词 quantum drift-diffusion weak solution semiclassical limit ISENTROPIC
原文传递
Dirichlet-Neumann Problem for Unipolar Isentropic Quantum Drift-Diffusion Model
8
作者 陈丽 陈秀卿 《Tsinghua Science and Technology》 SCIE EI CAS 2008年第4期560-569,共10页
This paper studies the existence, semiclassical limit, and long-time behavior of weak solutions to the unipolar isentropic quantum drift-diffusion model, a fourth order parabolic system. Semi-discretization in time an... This paper studies the existence, semiclassical limit, and long-time behavior of weak solutions to the unipolar isentropic quantum drift-diffusion model, a fourth order parabolic system. Semi-discretization in time and entropy estimates give the global existence and semiclassical limit of nonnegative weak solutions to the one-dimensional model with a nonnegative large initial value and a Dirichlet-Neumann boundary condition. Furthermore, the weak solutions are proven to exponentially approach constant steady state as time increases to infinity. 展开更多
关键词 quantum drift-diffusion fourth order parabolic system weak solution semiclassical limit exponential decay
原文传递
Weak solutions to one-dimensional quantum drift-diffusion equations for semiconductors
9
作者 蒋卫祥 管平 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期577-581,共5页
The weak solutions to the stationary quantum drift-diffusion equations (QDD) for semiconductor devices are investigated in one space dimension. The proofs are based on a reformulation of the system as a fourth-order... The weak solutions to the stationary quantum drift-diffusion equations (QDD) for semiconductor devices are investigated in one space dimension. The proofs are based on a reformulation of the system as a fourth-order elliptic boundary value problem by using an exponential variable transformation. The techniques of a priori estimates and Leray-Schauder's fixed-point theorem are employed to prove the existence. Furthermore, the uniqueness of solutions and the semiclassical limit δ→0 from QDD to the classical drift-diffusion (DD) model are studied. 展开更多
关键词 semiconductor device quantum drift-diffusion equations existence and uniqueness exponential variable transformation semiclassical limit
在线阅读 下载PDF
Nonlinear free vibration of piezoelectric semiconductor doubly-curved shells based on nonlinear drift-diffusion model 被引量:1
10
作者 Changsong ZHU Xueqian FANG Jinxi LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1761-1776,共16页
In this paper, the nonlinear free vibration behaviors of the piezoelectric semiconductor(PS) doubly-curved shell resting on the Pasternak foundation are studied within the framework of the nonlinear drift-diffusion(NL... In this paper, the nonlinear free vibration behaviors of the piezoelectric semiconductor(PS) doubly-curved shell resting on the Pasternak foundation are studied within the framework of the nonlinear drift-diffusion(NLDD) model and the first-order shear deformation theory. The nonlinear constitutive relations are presented, and the strain energy, kinetic energy, and virtual work of the PS doubly-curved shell are derived.Based on Hamilton's principle as well as the condition of charge continuity, the nonlinear governing equations are achieved, and then these equations are solved by means of an efficient iteration method. Several numerical examples are given to show the effect of the nonlinear drift current, elastic foundation parameters as well as geometric parameters on the nonlinear vibration frequency, and the damping characteristic of the PS doublycurved shell. The main innovations of the manuscript are that the difference between the linearized drift-diffusion(LDD) model and the NLDD model is revealed, and an effective method is proposed to select a proper initial electron concentration for the LDD model. 展开更多
关键词 nonlinear free vibration piezoelectric semiconductor(PS)doubly-curved shell nonlinear drift-diffusion(NLDD)model linearized drift-diffusion(LDD)model
在线阅读 下载PDF
3D Quantum Gravity, Localization and Particles beyond Standard Model
11
作者 Risto Raitio 《Journal of High Energy Physics, Gravitation and Cosmology》 2025年第1期96-109,共14页
We review a 3d quantum gravity model, which incorporates massive spinning fields into the Euclidean path integral in a Chern-Simons formulation. Fundamental matter as defined in our previous preon model is recapped. B... We review a 3d quantum gravity model, which incorporates massive spinning fields into the Euclidean path integral in a Chern-Simons formulation. Fundamental matter as defined in our previous preon model is recapped. Both quantum gravity and the particle model are shown to be derivable from the supersymmetric 3d Chern-Simons action. Forces-Matter unification is achieved. 展开更多
关键词 Chern-Simons Theory quantum Gravity Composite Particles Beyond Standard model
在线阅读 下载PDF
Quantum Magnetism from Low-Dimensional Quantum Ising Models with Quantum Integrability
12
作者 Yunjing Gao Jianda Wu 《Chinese Physics Letters》 2025年第4期142-152,共11页
Quantum integrability provides a unique and powerful framework for accurately understanding quantum magnetism.In this review,we focus specifically on several quantum integrable low-dimensional quantum Ising models.We ... Quantum integrability provides a unique and powerful framework for accurately understanding quantum magnetism.In this review,we focus specifically on several quantum integrable low-dimensional quantum Ising models.We begin with the transverse field Ising chain(TFIC)at quantum critical point and examine how it evolves under perturbations,such as an applied longitudinal field or weak coupling to another quantum critical TFIC. 展开更多
关键词 transverse field ising chain tfic quantum magnetism transverse field ising chain applied longitudinal field weak coupling quantum integrability quantum ising models quantum magnetismin
原文传递
Developing a Predictive Platform for Salmonella Antimicrobial Resistance Based on a Large Language Model and Quantum Computing
13
作者 Yujie You Kan Tan +1 位作者 Zekun Jiang Le Zhang 《Engineering》 2025年第5期174-184,共11页
As a common foodborne pathogen,Salmonella poses risks to public health safety,common given the emergence of antimicrobial-resistant strains.However,there is currently a lack of systematic platforms based on large lang... As a common foodborne pathogen,Salmonella poses risks to public health safety,common given the emergence of antimicrobial-resistant strains.However,there is currently a lack of systematic platforms based on large language models(LLMs)for Salmonella resistance prediction,data presentation,and data sharing.To overcome this issue,we firstly propose a two-step feature-selection process based on the chi-square test and conditional mutual information maximization to find the key Salmonella resistance genes in a pan-genomics analysis and develop an LLM-based Salmonella antimicrobial-resistance predictive(SARPLLM)algorithm to achieve accurate antimicrobial-resistance prediction,based on Qwen2 LLM and low-rank adaptation.Secondly,we optimize the time complexity to compute the sample distance from the linear to logarithmic level by constructing a quantum data augmentation algorithm denoted as QSMOTEN.Thirdly,we build up a user-friendly Salmonella antimicrobial-resistance predictive online platform based on knowledge graphs,which not only facilitates online resistance prediction for users but also visualizes the pan-genomics analysis results of the Salmonella datasets. 展开更多
关键词 Salmonella resistance prediction Pan-genomics Large language model quantum computing BIOINFORMATICS
在线阅读 下载PDF
Solutions and quantum dynamics of the quantum Rabi model with A-square terms
14
作者 Xiang-You Chen Tian Ye Qing-Hu Chen 《Communications in Theoretical Physics》 2025年第5期45-49,共5页
It is well known that the A-square term must be considered in both cavity and circuit quantum electrodynamics systems,because it arises in the derivation from the minimal coupling Hamiltonian at any finite coupling st... It is well known that the A-square term must be considered in both cavity and circuit quantum electrodynamics systems,because it arises in the derivation from the minimal coupling Hamiltonian at any finite coupling strength.In this paper,we study the quantum Rabi model with A-square terms using the Bogoliubov operator approach.After a unitary transformation,the A-square terms can be eliminated,resulting in a modified quantum Rabi model with renormalized parameters.A transcendental function responsible for the exact solution is then derived.The presence of the A-square terms is found to significantly alter the energy spectrum.The dynamics are also studied using the obtained exact wave function,which is sensitive to the strength of the A-square terms at strong coupling.We believe that these results could be observed in future light–matter interaction systems in the ultra-strong and deep strong coupling regimes. 展开更多
关键词 light-matter interaction quantum Rabi model A-square terms ultra-strong strong coupling dynamics
原文传递
Pattern description of quantum phase transitions in the transverse antiferromagnetic Ising model with a longitudinal field
15
作者 Yun-Tong Yang Fu-Zhou Chen Hong-Gang Luo 《Chinese Physics B》 2025年第12期470-476,共7页
A uniform longitudinal field applied to the transverse Ising model(TIM)distinguishes the antiferromagnetic Ising interaction from its ferromagnetic counterpart.While the ground state of the latter shows no quantum pha... A uniform longitudinal field applied to the transverse Ising model(TIM)distinguishes the antiferromagnetic Ising interaction from its ferromagnetic counterpart.While the ground state of the latter shows no quantum phase transition(QPT),the ground state of the former exhibits rich phases:paramagnetic,antiferromagnetic,and possibly disordered phases.Although the first two are clearly identified,the existence of the disordered phase remains controversial.Here,we use the pattern picture to explore the competition among the antiferromagnetic Ising interaction J,the transverse field hx and the longitudinal field h_(z),and uncover which patterns are responsible for these three competing energy scales,thereby determining the possible phases and the QPTs among them.The system size ranges from L=8 to 128 and the transverse field hx is fixed at 1.Under these parameters,our results show the existence of the disordered phase.For a small h_(z),the system transitions from a disordered phase to an antiferromagnetic phase as J increases.For a large h_(z),the system undergoes two phase transitions:from paramagnetic to disordered,and then to antiferromagnetic phase.These results not only unveil the rich physics of this paradigmatic model but also stimulate quantum simulation by using currently available experimental platforms. 展开更多
关键词 pattern picture quantum phase transitions antiferromagnetic Ising model
原文传递
Quantum phase transitions with eigen microstate approach in one-dimensional transverse-field Ising model
16
作者 Zhongshan Su Yuan Jiang +5 位作者 Gaoke Hu Yue-Hua Su Liangsheng Li Wen-Long You Maoxin Liu Xiaosong Chen 《Chinese Physics B》 2025年第8期652-657,共6页
We propose an eigen microstate approach(EMA)for analyzing quantum phase transitions in quantum many-body systems,introducing a novel framework that does not require prior knowledge of an order parameter.Using the tran... We propose an eigen microstate approach(EMA)for analyzing quantum phase transitions in quantum many-body systems,introducing a novel framework that does not require prior knowledge of an order parameter.Using the transversefield Ising model(TFIM)as a case study,we demonstrate the effectiveness of EMA by identifying key features of the phase transition through the scaling behavior of eigenvalues and the structure of associated eigen microstates.Our results reveal substantial changes in the ground state of the TFIM as it undergoes a phase transition,as reflected in the behavior of specific componentsξ_(i)^((k))within the eigen microstates.This method is expected to be applicable to other quantum systems where predefining an order parameter is challenging. 展开更多
关键词 eigen microstate approach quantum phase transition transverse-field Ising model
原文传递
Calculation of the carrier dynamics and impedance spectroscopy model in quantum well infrared photodetectors
17
作者 Chenzhe Hu Yuyu Bu +2 位作者 Xianying Dai Fengqiu Jiang Yue Hao 《Journal of Semiconductors》 2025年第3期89-95,共7页
Quantum well infrared photodetectors(QWIPs) based on intersubband transitions hold significant potential for high bandwidth operation. In this work, we establish a carrier transport optimization model incorporating el... Quantum well infrared photodetectors(QWIPs) based on intersubband transitions hold significant potential for high bandwidth operation. In this work, we establish a carrier transport optimization model incorporating electron injection at the emitter to investigate the carrier dynamics time and impedance spectroscopy in GaAs/AlGaAs QWIPs. Our findings provide novel evidence that the escape time of electrons is the key limiting factor for the 3-dB bandwidth of QWIPs. Moreover, to characterize the impact of carrier dynamics time and non-equilibrium space charge region on impedance, we developed an equivalent circuit model where depletion region resistance and capacitance are employed to describe non-equilibrium space charge region. Using this model, we discovered that under illumination, both net charge accumulation caused by variations in carrier dynamics times within quantum wells and changes in width of non-equilibrium space charge region exert different dominant influences on depletion region capacitance at various doping concentrations. 展开更多
关键词 quantum well infrared photodetectors(QWIPs) carrier dynamics time impedance spectroscopy equivalent circuit model 3-dB bandwidth
在线阅读 下载PDF
Quantum and Semiclassical Non-Hermitian Dicke Models without Nonreciprocity
18
作者 Bin Jiang Yi-Yang Li +2 位作者 Jun-Jie Liu Chen Wang Jian-Hua Jiang 《Chinese Physics Letters》 2025年第12期96-114,共19页
The Dicke model,which describes the collective interaction between an ensemble of atoms and a single-mode photon field,serves as a fundamental framework for studying light-matter interactions and quantum electrodynami... The Dicke model,which describes the collective interaction between an ensemble of atoms and a single-mode photon field,serves as a fundamental framework for studying light-matter interactions and quantum electrodynamic phenomena.In this work,we investigate the manifestation of non-Hermitian effects in a generalized Dicke model,where two dissipative atom ensembles interact with a single-mode photon field.We explore the system in the semiclassical limit as a non-Hermitian Dicke model,revealing rich exceptional points(EPs)and diabolic points.Furthermore,we explore the quantum signature of EPs in the Hilbert space,relying on discrete photon numbers.The transition of photons from antibunching to bunching at steady state is unravelled.Our findings deepen the understanding of non-Hermitian physics in light-matter interaction,which is instructive for the design of advanced photonic devices. 展开更多
关键词 generalized dicke modelwhere light matter interaction dicke model exceptional points diabolic points dissipative atom ensembles non hermitian effects quantum electrodynamic
原文传递
Asymptotic Behavior of Solutions for the One-Dimensional Drift-Diffusion Model in the Quarter Plane
19
作者 ZHOU Fang 《Wuhan University Journal of Natural Sciences》 CAS 2014年第2期144-148,共5页
In this paper, we study the classical drift-diffusion model arising from the semiconductor device simulation, which is the simplest macroscopic model describing the dynamics of the electron and the hole. We prove the ... In this paper, we study the classical drift-diffusion model arising from the semiconductor device simulation, which is the simplest macroscopic model describing the dynamics of the electron and the hole. We prove the global existence of strong solutions for the initial boundary value problem in the quarter plane. In particular, we show that in large time, these solutions tend to the nonlinear diffusion wave which is different from the steady state, at an algebraic time-decay rate. As far as we know, this is the first result about the nonlinear diffusion wave phenomena of the solutions for the one-dimensional drift-diffusion model in the quarter plane. 展开更多
关键词 asymptotic behavior drift-diffusion model nonli- near diffusion wave energy estimates
原文传递
MATHEMATICAL MODEL OF ~4He QUANTUM INTERFEROMETER GYROSCOPE 被引量:5
20
作者 郑睿 赵伟 +2 位作者 刘建业 谢征 冯铭瑜 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第4期360-366,共7页
The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- sc... The mathematical model of 4He quantum interferometer gyroscope is presented. The model includes the driven equation, the current equation and the position equation. Therefore, it can sufficiently describe the gyro- scope system. The driven equation shows the thermally driven gyroscope can work for a long time but the pres- sure driven one cannot. From the current equation, the superfluid currents passing through the weak link contain the AC currents which show the rotation flux, and other currents caused by drive. As shown in the position equa- tion, the displacement of diaphragm is the only detectable parameter in the gyroscope system. The model is tested by the simulations based on experimental parameters, and can be used to research performance of the gyroscope and analyse the gyroscope error. 展开更多
关键词 4He quantum interferometer gyroscope mathematical model pressure drive thermal drive
在线阅读 下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部