期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Size matters:quantum confinement-driven dynamics in CsPbI_(3)quantum dot light-emitting diodes 被引量:1
1
作者 Shuo Li Wenxu Yin +1 位作者 Weitao Zheng Xiaoyu Zhang 《Journal of Semiconductors》 2025年第4期55-61,共7页
The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investiga... The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices. 展开更多
关键词 quantum confinement effect CsPbI_(3) quantum dot light-emitting diode
在线阅读 下载PDF
Quantum confinement of carriers in the type-I quantum wells structure
2
作者 Xinxin Li Zhen Deng +4 位作者 Yang Jiang Chunhua Du Haiqiang Jia Wenxin Wang Hong Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期553-558,共6页
Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However... Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However,our previous research has revealed efficient carrier escape in low-dimensional structures,contradicting this conventional understanding.In this study,we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone.By accounting for all wave vectors,we obtain a certain distribution of carrier energy at each quantized energy level,giving rise to the energy subbands.These results enable carriers to escape from the well under the influence of an electric field.Additionally,we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport.Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands,discovering new physical phenomena,and designing novel devices with superior performance. 展开更多
关键词 energy band quantum confinement type-I quantum wells low-dimensional structures
原文传递
Quantum confinement and surface chemistry of 0.8–1.6 nm hydrosilylated silicon nanocrystals 被引量:1
3
作者 皮孝东 王蓉 杨德仁 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期565-572,共8页
In the framework of density functional theory (DFT), we have studied the electronic properties of alkene/alkyne- hydrosilylated silicon nanocrystals (Si NCs) in the size range from 0.8 nm to 1.6 nm. Among the alke... In the framework of density functional theory (DFT), we have studied the electronic properties of alkene/alkyne- hydrosilylated silicon nanocrystals (Si NCs) in the size range from 0.8 nm to 1.6 nm. Among the alkenes with all kinds of functional groups considered in this work, only those containing -NH2 and -C4H3S lead to significant hydrosilylation- induced changes in the gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of an Si NC at the ground state. The quantum confinement effect is dominant for all of the alkene- hydrosilylated Si NCs at the ground state. At the excited state, the prevailing effect of surface chemistry only occurs at the smallest (0.8 nm) Si NCs hydrosilylated with alkenes containing -NH2 and -C4H3S. Although the alkyne hydrosilylation gives rise to a more significant surface chemistry effect than alkene hydrosilylation, the quantum confinement effect remains dominant for alkyne-hydrosilylated Si NCs at the ground state. However, at the excited state, the effect of surface chemistry induced by the hydrosilylation with conjugated alkynes is strong enough to prevail over that of quantum confinement. 展开更多
关键词 silicon nanocrystals HYDROSILYLATION quantum confinement surface chemistry
原文传递
Charge transport and quantum confinement in MoS2 dual-gated transistors
4
作者 Fuyou Liao Hongjuan Wang +12 位作者 Xiaojiao Guo Zhongxun Guo Ling Tong Antoine Riaud Yaochen Sheng Lin Chen Qingqing Sun Peng Zhou David Wei Zhang Yang Chai Xiangwei Jiang Yan Liu Wenzhong Bao 《Journal of Semiconductors》 EI CAS CSCD 2020年第7期39-43,共5页
Semiconductive two dimensional(2D)materials have attracted significant research attention due to their rich band structures and promising potential for next-generation electrical devices.In this work,we investigate th... Semiconductive two dimensional(2D)materials have attracted significant research attention due to their rich band structures and promising potential for next-generation electrical devices.In this work,we investigate the MoS2 field-effect transistors(FETs)with a dual-gated(DG)architecture,which consists of symmetrical thickness for back gate(BG)and top gate(TG)dielectric.The thickness-dependent charge transport in our DG-MoS2 device is revealed by a four-terminal electrical measurement which excludes the contact influence,and the TCAD simulation is also applied to explain the experimental data.Our results indicate that the impact of quantum confinement effect plays an important role in the charge transport in the MoS2 channel,as it confines charge carriers in the center of the channel,which reduces the scattering and boosts the mobility compared to the single gating case.Furthermore,temperature-dependent transfer curves reveal that multi-layer MoS2 DG-FET is in the phonon-limited transport regime,while single layer MoS2 shows typical Coulomb impurity limited regime. 展开更多
关键词 MOS2 field effect transistors DUAL-GATE quantum confinement Coulomb impurity
在线阅读 下载PDF
Bipolaron in different configuration of quantum confinement
5
作者 阮永红 陈庆虎 焦正宽 《Journal of Zhejiang University Science》 EI CSCD 2004年第7期873-877,共5页
The authors used Landau-Pekar variational method to investigate a strong-coupling singlet optical bipolaron in different configuration of quantum confinement. Numerical and analytical results showed that when configur... The authors used Landau-Pekar variational method to investigate a strong-coupling singlet optical bipolaron in different configuration of quantum confinement. Numerical and analytical results showed that when configuration changes from quantum dot and wire to well, confinement shows different effect on the formation of a bipolaron. In contrast to a bipolaron in a quantum dot or wire, the binding energy of a bipolaron in a quantum well increases with increasing con-finement, indicating that confinement favors bipolaron formation in a quantum well. 展开更多
关键词 BIPOLARON quantum confinement quantum wire quantum well quantum dot Binding energy
在线阅读 下载PDF
Phonon thermal transport properties of XB_(2)(X=Mg and Al)compounds:considering quantum confinement and electron-phonon interaction
6
作者 Sen Liu Zheng Chang +3 位作者 Xiao-Liang Zhang Kun-Peng Yuan Yu-Fei Gao Da-Wei Tang 《Rare Metals》 SCIE EI CAS CSCD 2023年第9期3064-3074,共11页
XB_(2)(X=Mg and Al)compounds have drawn great attention for their superior electronic characteristics and potential applications in semiconductors and superconductors.The study of phonon thermal transport properties o... XB_(2)(X=Mg and Al)compounds have drawn great attention for their superior electronic characteristics and potential applications in semiconductors and superconductors.The study of phonon thermal transport properties of XB_(2)is significant to their application and mechanism behind research.In this work,the phonon thermal transport properties of three-dimensional(3D)and two-dimensional(2D)XB_(2)were studied by first-principles calculations.After considering the electron-phonon interaction(EPI),the thermal conductivities(TCs)of 3D Mg B_(2)and 3D Al B_(2)decrease by 29%and 16%which is consistent with experimental values.Moreover,the underlying mechanisms of reduction on lattice TCs are the decrease in phonon lifetime and heat capacity when considering quantum confinement effect.More importantly,we are surprised to find that there is a correlation between quantum confinement effect and EPI.The quantum confinement will change the phonon and electron characteristics which has an impact on EPI.Overall,our work is expected to provide insights into the phonon thermal transport properties of XB_(2)compounds considering EPI and quantum confinement effect. 展开更多
关键词 SUPERCONDUCTOR Phonon thermal transport properties Electron-phonon interaction(EPI) quantum confinement effect
原文传递
Quantum confinement effects and source-to-drain tunneling in ultra-scaled double-gate silicon n-MOSFETs
7
作者 Jiang Xiang-Wei Li Shu-Shen 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期490-497,共8页
By using the linear combination of bulk band (LCBB) method incorporated with the top of the barrier splitting (TBS) model, we present a comprehensive study on the quantum confinement effects and the source-to-drai... By using the linear combination of bulk band (LCBB) method incorporated with the top of the barrier splitting (TBS) model, we present a comprehensive study on the quantum confinement effects and the source-to-drain tunneling in the ultra-scaled double-gate (DG) metal-oxide semiconductor field-effect transistors (MOSFETs). A critical body thickness value of 5 nm is found, below which severe valley splittings among different X valleys for the occupied charge density and the current contributions occur in ultra-thin silicon body structures. It is also found that the tunneling current could be nearly 100% with an ultra-scaled channel length. Different from the previous simulation results, it is found that the source-to-drain tunneling could be effectively suppressed in the ultra-thin body thickness (2.0 nm and below) by the quantum confinement and the tunneling could be suppressed down to below 5% when the channel length approaches 16 nm regardless of the body thickness. 展开更多
关键词 quantum confinement TUNNELING metal-oxide-semiconductor field-effect transistors linear combination of bulk band
原文传递
Analysis on porous Si PL from quantum confinement effect
8
作者 WANGKaiyuan TANGJieying 《Semiconductor Photonics and Technology》 CAS 1995年第1期84-87,共4页
We have measured the variation of photoluminescence(PL) in porous silicon with anodization(AO) time,HF soak time or natural oxidation time,and found that the peak value of PL spectrum will shift towards shorter value ... We have measured the variation of photoluminescence(PL) in porous silicon with anodization(AO) time,HF soak time or natural oxidation time,and found that the peak value of PL spectrum will shift towards shorter value as above time is increased.The analyses in experiment and theory show that the quantum confined structures produced by the AO process may be responsible for the blue shift. 展开更多
关键词 Porous Materials Anodization Spectral Analysis PHOTOLUMINESCENCE quantum confinement Effect
在线阅读 下载PDF
Evaluating the quantum confinement effects modulating exciton and electronic band structures of two-dimensional layered MoSSe films and their photodetection potentials
9
作者 Yifan Ding Xudan Zhu +8 位作者 Hongyu Tang Weiming Liu Shuwen Shen Jiajie Fan Yi Luo Yuxiang Zheng Chunxiao Cong Siyuan Luo Rongjun Zhang 《Science China Materials》 SCIE EI CAS CSCD 2024年第10期3087-3095,共9页
Emerging two-dimensional ternary transition metal dichalcogenide alloys have attracted much attention for their unique optical and optoelectronic properties,making them ideal candidates for optoelectronic applications... Emerging two-dimensional ternary transition metal dichalcogenide alloys have attracted much attention for their unique optical and optoelectronic properties,making them ideal candidates for optoelectronic applications.However,a comprehensive understanding of their quantum confinement effects and photoelectronic response characteristics remains crucial for device optimization and performance enhancement.In this study,we employed various spectroscopic techniques to investigate the optical properties and electronic band structures of molybdenum sulfide selenide(MoSSe)films with different layer numbers(4–11 layers).Our results revealed the splitting of Raman modes and shifting of phonon vibrational frequencies with increasing thickness,suggesting that MoSSe has strong interactions within the lattice.The A1g and E2g 1 modes were mainly shifted by internal strain and dielectric screening effect versus thickness,respectively.The redshift phenomenon of A and B excitons with increasing thickness was attributed to the leading effect of quantum confinement on exciton properties and optical band gaps.We observed a strong decrease in the direct bandgap spectral weight in photoluminescence(PL)when the layer number increased from 4 to 5.In addition,we have fabricated MoSSe photodetectors that exhibit a broadband response in the visible wavelength band of 350–800 nm.Furthermore,the observed enhancement in photocurrent and responsivity with increasing film thickness underscored the potential of MoSSebased devices for practical optoelectronic applications.This research contributes to advancing our fundamental understanding of MoSSe materials and paves the way for the design and development of high-performance optoelectronic devices. 展开更多
关键词 MoSSe alloy quantum confinement effects EXCITON electronic band structure PHOTODETECTION
原文传递
Shubnikov-de Haas Quantum Oscillations with Large Spin Splitting in High-Mobility Al_(0.8)Ga_(0.2)Sb/InAs/Al_(0.8)Ga_(0.2)Sb Quantum-Well Heterostructures
10
作者 Zhenghang Zhi Hanzhi Ruan +6 位作者 Jiuming Liu Xinpeng Li Yong Zhang Qi Yao Chenjia Tang Yujie Xiao Xufeng Kou 《Chinese Physics Letters》 2025年第9期208-213,共6页
We report the epitaxial growth of high-quality Al_(0.8)Ga_(0.2)Sb/InAs/Al_(0.8)Ga_(0.2)Sb quantum well films characterized by high carrier mobility and strong spin-orbit coupling.By appropriately optimizing the Al-to-... We report the epitaxial growth of high-quality Al_(0.8)Ga_(0.2)Sb/InAs/Al_(0.8)Ga_(0.2)Sb quantum well films characterized by high carrier mobility and strong spin-orbit coupling.By appropriately optimizing the Al-to-Ga ratio in the AlGaSb barrier layer,the quantum confinement of the heterostructure is significantly enhanced.Alongside a giant magnetoresistance ratio of 3.65×10^(5)%,the two-carrier transport model from Hall measurements reveals an ultra-high electron mobility of 7.18×10^(5)cm^(2)·V^(-1)·s^(-1)at low temperatures.Meanwhile,pronounced Shubnikov-de Haas(SdH)quantum oscillations persist up to 30 K,and their single-frequency feature indicates a well-defined Fermi surface without subband mixing in the two-dimensional electron gas channel.Moreover,the large effective g-factor and tilted-field-induced orbital effect lead to the observation of split SdH peaks at large magnetic fields.Our results validate that AlGaSb/InAs quantum well heterostructures are suitable candidates for constructing energy-efficient topological spintronic devices. 展开更多
关键词 giant magnetoresistance ratio electron mobility quantum confinement Shubnikov de Haas algasb barrier layerthe quantum Oscillations hall measurements high carrier mobility
原文传递
Compact modeling of quantum confinements in nanoscale gate-all-around MOSFETs
11
作者 Baokang Peng Yanxin Jiao +7 位作者 Haotian Zhong Zhao Rong Zirui Wang Ying Xiao Waisum Wong Lining Zhang Runsheng Wang Ru Huang 《Fundamental Research》 CAS CSCD 2024年第5期1306-1313,共8页
In this work,a surface-potential based compact model focusing on the quantum confinement effects of ultimately scaled gate-all-around(GAA)MOSFET is presented.Energy quantization with sub-band formation along the radiu... In this work,a surface-potential based compact model focusing on the quantum confinement effects of ultimately scaled gate-all-around(GAA)MOSFET is presented.Energy quantization with sub-band formation along the radius direction of cylindrical GAAs or thickness direction of nanosheet GAAs leads to significant quantization effects.An analytical model of surface potentials is developed by solving the Poisson equation with incorporating sub-band effects.In combination with the existing transport model framework,charge-voltage and current-voltage formulations are developed based on the surface potential.The model formulations are then extensively validated using TCAD numerical simulations as well as Si data of nanosheet GAA MOSFETs.Simulations of typical circuits verify the model robustness and convergence for its applications in GAA technology. 展开更多
关键词 Gate-all-around FET Compact model quantum mechanical confinement Nanosheet FET Nanowire FET Sub-band energy
原文传递
Quantum confinement effect of two-dimensional all-inorganic halide perovskites 被引量:3
12
作者 蔡波 李晓明 +8 位作者 顾宇 Moussab Harb 李建海 谢美秋 曹菲 宋继中 张胜利 Luigi Cavallo 曾海波 《Science China Materials》 SCIE EI CSCD 2017年第9期811-818,共8页
Quantum confinement effect(QCE), an essential physical phenomenon of semiconductors when the size becomes comparable to the exciton Bohr radius, typically results in quite different physical properties of low-dimens... Quantum confinement effect(QCE), an essential physical phenomenon of semiconductors when the size becomes comparable to the exciton Bohr radius, typically results in quite different physical properties of low-dimensional materials from their bulk counterparts and can be exploited to enhance the device performance in various optoelectronic applications. Here, taking Cs Pb Br3 as an example, we reported QCE in all-inorganic halide perovskite in two-dimensional(2D) nanoplates. Blue shifts in optical absorption and photoluminescence spectra were found to be stronger in thinner nanoplates than that in thicker nanoplates, whose thickness lowered below -7 nm. The exciton binding energy results showed similar trend as that obtained for the optical absorption and photoluminescence. Meanwile, the function of integrated intensity and full width at half maximum and temperature also showed similar results, further supporting our conclusions. The results displayed the QCE in all-inorganic halide perovskite nanoplates and helped to design the all-inorganic halide perovskites with desired optical properties. 展开更多
关键词 quantum confinement effect all-inorganic halide perovskites NANOPLATES temperature dependence luminescence
原文传递
Surface depletion field in 2D perovskite microplates: Structural phase transition, quantum confinement and Stark effect 被引量:2
13
作者 Wancai Li Chen Fang +6 位作者 Haizhen Wang Shuai Wang Junze Li Jiaqi Ma Jun Wang Hongmei Luo Dehui Li 《Nano Research》 SCIE EI CAS CSCD 2019年第11期2858-2865,共8页
Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical,electronic and optoelectronic properties of the materials,especially low-dimensional materials.T... Surface depletion field would introduce the depletion region near surface and thus could significantly alter the optical,electronic and optoelectronic properties of the materials,especially low-dimensional materials.Two-dimensional(2D)organic—inorganic hybrid perovskites with van der Waals bonds in the out-of-plane direction are expected to have less influence from the surface depletion field;nevertheless,studies on this remain elusive.Here we report on how the surface depletion field affects the structural phase transition,quantum confinement and Stark effect in 2D(BA)2PbI4 perovskite microplates by the thickness-,temperature-and power-dependent photoluminescence(PL)spectroscopy.Power dependent PL studies suggest that high-temperature phase(HTP)and low-temperature phase(LTP)can coexist in a wider temperature range depending on the thickness of the 2D perovskite microplates.With the decrease of the microplate thickness,the structural phase transition temperature first gradually decreases and then increases below 25 nm,in striking contrast to the conventional size dependent structural phase transition.Based on the thickness evolution of the emission peaks for both high-temperature phase and low-temperature phase,the anomalous size dependent phase transition could probably be ascribed to the surface depletion field and the surface energy difference between polymorphs.This explanation was further supported by the temperature dependent PL studies of the suspended microplates and encapsulated microplates with graphene and boron nitride flakes.Along with the thickness dependent phase transition,the emission energies of free excitons for both HTP and LTP with thickness can be ascribed to the surface depletion induced confinement and Stark effect. 展开更多
关键词 two-dimensional(2D)perovskite thickness surface depletion field structural phase transition quantum confinement Stark effect
原文传递
Novel method to determine effective length of quantum confinement using fractional-dimension space approach 被引量:2
14
作者 Hua Li Bing-Can Liu +2 位作者 Bing-Xin Shi Si-Yu Dong Qiang Tian 《Frontiers of physics》 SCIE CSCD 2015年第4期97-102,共6页
The binding energy and effective mass of a polaron confined in a GaAs film deposited on an AlGal-xAs substrate are investigated, for different film thickness values and aluminum concentra- tions and within the framewo... The binding energy and effective mass of a polaron confined in a GaAs film deposited on an AlGal-xAs substrate are investigated, for different film thickness values and aluminum concentra- tions and within the framework of the fractional-dimensional space approach. Using this scheme, we propose a new method to define the effective length of the quantum confinement. The limita- tions of the definition of the original effective well width are discussed, and the binding energy and effective mass of a polaron confined in a GaAs film are obtained. The fl-actional-dimensional theo- retical results are shown to be in good agreement with previous, more detailed calculations based on second-order perturbation theory. 展开更多
关键词 fractional-dimensional approach effective length of quantum confinement polaron effect GaAs film
原文传递
Photoluminescence of carbon quantum dots:coarsely adjusted by quantum confinement effects and finely by surface trap states 被引量:2
15
作者 Zexi Liu Hongyan Zou +5 位作者 Ni Wang Tong Yang Zhewei Peng Jian Wang Na Li Chengzhi Huang 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第4期490-496,共7页
Photoluminescence(PL)mechanism of carbon quantum dots(CQDs)remains controversial up to now even though a lot of approaches have been made.In order to do that,herein a PL color ladder from blue to near infrared of CQDs... Photoluminescence(PL)mechanism of carbon quantum dots(CQDs)remains controversial up to now even though a lot of approaches have been made.In order to do that,herein a PL color ladder from blue to near infrared of CQDs with the absolute quantum yields higher than 70%were prepared via a one-pot hydrothermal synthesis route and separated by silica gel column.Time-correlated single photon counting measurements suggest that the electron transition takes in effect in the PL progress of the crystalline core-shell structured CQDs,and the PL properties could be coarsely adjusted by tuning the size of the crystalline carbon core owing to quantum confinement effects,and finely adjusted by changing the surface functional groups consisted shell owing to surface trap states,respectively.Both coarse and fine adjustments of PL,as optical and photoelectrical characterizations and density-functional theory(DFT)calculations have demonstrated,make it possible for top-level design and precise synthesis of new CQDs with specific optical properties. 展开更多
关键词 carbon quantum dots quantum confinement effects surface trap states electron transition
原文传递
The impact of quantum confinement on the electrical characteristics of ultrathinchannel GeOI MOSFETs
16
作者 范敏敏 徐静平 +1 位作者 刘璐 白玉蓉 《Journal of Semiconductors》 EI CAS CSCD 2014年第4期62-67,共6页
The impact of quantum confinement on the electrical characteristics of ultrathin-channel GeO1 n- MOSFETs is investigated on the basis of the density-gradient model in TCAD software. The effects of the channel thickne... The impact of quantum confinement on the electrical characteristics of ultrathin-channel GeO1 n- MOSFETs is investigated on the basis of the density-gradient model in TCAD software. The effects of the channel thickness (Tch) and back-gate bias (Vbg) on the electrical characteristics of GeOI MOSFETs are examined, and the simulated results are compared with those using the conventional semi-classical model. It is shown that when T^h 〉 8 rim, the electron conduction path of the GeOI MOSFET is closer to the front-gate interface under the QC model than under the CL model, and vice versa when Tch 〈 8 rim. Thus the electrically controlled ability of the front gate of the devices is influenced by the quantum effect. In addition, the quantum-mechanical mechanism will enhance the drain-induced barrier lowering effect, increase the threshold voltage and decrease the on-state current; for a short channel length (≤ 30 nm), when Tch 〉 8 nm (or 〈 8 nm), the quantum-mechanical mechanism mainly impacts the subthreshold slope (or the threshold voltage). Due to the quantum-size effect, the off-state current can be suppressed as the channel thickness decreases. 展开更多
关键词 GeOl MOSFET quantum confinement subthreshold slope threshold voltage
原文传递
Quantum confinement effect in β-SiC nanowires
17
作者 Gang Peng Xiaoyan Yu +4 位作者 Yan-Lan He Gong-Yi Li Yi-Xing Liu Xinfang Zhang Xue-Ao Zhang 《Frontiers of physics》 SCIE CSCD 2018年第4期117-122,共6页
The quantum confinement effect is important in nanoelectronics and optoelectronics applications; however, there is a discrepancy between the theory of quantum confinement, which indicates that band-gap widening occurs... The quantum confinement effect is important in nanoelectronics and optoelectronics applications; however, there is a discrepancy between the theory of quantum confinement, which indicates that band-gap widening occurs only at small sizes, and experimental observations of band-gap widening in large-diameter nanowires (NWs). This paper reports an obvious blue shift of the absorption edge in the UV-visible absorption spectra of SiC NWs with diameters of 50-300 nm. On the basis of quantum confinement theory and high-resolution transmission electron microscopy images of SiC NWs, band-gap widening in SiC NWs with diameters of up to hundreds of nanometers is fully explained; the results could help to explain similar band-gap widening in other NWs with large diameters. 展开更多
关键词 quantum confinement effect SiC nanowires (SiC NWs) band gap
原文传递
Site-controlled formation of InGaAs quantum nanostructures——Tailoring the dimensionality and the quantum confinement
18
作者 Baolai Liang Ping-Show Wong +6 位作者 Thai Tran Vitaliy G. Dorogan Yuriy I. Mazur Morgan E. Ware Gregory J. Salamo Chih-Kang Shih Diana L. Huffaker 《Nano Research》 SCIE EI CAS CSCD 2013年第4期235-242,共8页
We report on InGaAs quantum disks (QDks) controllably formed on the top (001) facet of nano-patterned GaAs pyramidal platforms. The QDks exhibit pyramidal shape with special facets and varied dimensions, depending... We report on InGaAs quantum disks (QDks) controllably formed on the top (001) facet of nano-patterned GaAs pyramidal platforms. The QDks exhibit pyramidal shape with special facets and varied dimensions, depending on the GaAs pyramidal buffer and the amount of InGaAs deposited. The formation of QDks is explained by the overgrowth of an InGaAs layer and thereafter coalescence of small InGaAs islands. Photoluminescence (PL) characteristics of ensemble QDks and exciton features of individual QDks together demonstrate that we may achieve a transition from zero-dimensional (0D) to two-dimensional (2D) quantum structure with increasing QDk size. This transition provides the flexibility to continuously tailor the dimensionality and subsequently the quantum confinement of semiconductor nanostructures via site-controlled self-assembled epitaxy for device applications based on single quantum structures. 展开更多
关键词 selected area epitaxy quantum confinement quantum disk photoluminescence
原文传递
Inorganic Halide Perovskite Quantum Dots:A Versatile Nanomaterial Platform for Electronic Applications 被引量:6
19
作者 Chien‑Yu Huang Hanchen Li +7 位作者 Ye Wu Chun‑Ho Lin Xinwei Guan Long Hu Jiyun Kim Xiaoming Zhu Haibo Zeng Tom Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期1-31,共31页
Metal halide perovskites have generated significant attention in recent years because of their extraordinary physical properties and photovoltaic performance.Among these,inorganic perovskite quantum dots(QDs)stand out... Metal halide perovskites have generated significant attention in recent years because of their extraordinary physical properties and photovoltaic performance.Among these,inorganic perovskite quantum dots(QDs)stand out for their prominent merits,such as quantum confinement effects,high photoluminescence quantum yield,and defect-tolerant structures.Additionally,ligand engineering and an all-inorganic composition lead to a robust platform for ambient-stable QD devices.This review presents the state-of-the-art research progress on inorganic perovskite QDs,emphasizing their electronic applications.In detail,the physical properties of inorganic perovskite QDs will be introduced first,followed by a discussion of synthesis methods and growth control.Afterwards,the emerging applications of inorganic perovskite QDs in electronics,including transistors and memories,will be presented.Finally,this review will provide an outlook on potential strategies for advancing inorganic perovskite QD technologies. 展开更多
关键词 Inorganic perovskite quantum dots Electronics NANOCRYSTALS quantum confinement effects
在线阅读 下载PDF
From self-assembly to quantum guiding: A review of magnetic atomic structures on noble metal surfaces 被引量:2
20
作者 曹荣幸 张孝谱 +4 位作者 缪冰锋 孙亮 吴镝 游彪 丁海峰 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期32-46,共15页
Recent advances in the study of magnetic atomic structures on noble metal surfaces are reviewed. These include one- dimensional strings, two-dimensional hexagonal superlattices, and novel structures stabilized by quan... Recent advances in the study of magnetic atomic structures on noble metal surfaces are reviewed. These include one- dimensional strings, two-dimensional hexagonal superlattices, and novel structures stabilized by quantum guiding. The combined techniques of low-temperature scanning tunneling microscopy, kinetic Monte Carlo simulations, and ab initio calculations reveal that surface-state-mediated adatom-step and adatom-adatom interactions are the driving forces for self- assembly of these structures. The formation conditions are further discussed by comparing various experimental systems and the kinetic Monte Carlo simulations. Using scanning tunneling spectroscopy and tight-binding calculations together, we reveal that the spectra of these well-ordered structures have characteristic peaks induced by electronic scattering processes of the atoms within the local environment. Moreover, it is demonstrated that quantum confinement by means of nano-size corrals has significant influence on adatom diffusion and self-assembly, leading to a quantum-guided self-assembly. 展开更多
关键词 surface states long-range interaction SELF-ASSEMBLY quantum confinement
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部