A subdynamics theory framework for describing multi coupled quantum computing systems is presented first. A general kinetic equation for the reduced system is given then, enabling a sufficient condition to be formula...A subdynamics theory framework for describing multi coupled quantum computing systems is presented first. A general kinetic equation for the reduced system is given then, enabling a sufficient condition to be formulated for constructing a pure coherent quantum computing system. This reveals that using multi coupled systems to perform quantum computing in Rigged Liouville Space opens the door to controlling or eliminating the intrinsic de coherence of quantum computing systems.展开更多
The rapid advancement of quantum computing has sparked a considerable increase in research attention to quantum technologies.These advances span fundamental theoretical inquiries into quantum information and the explo...The rapid advancement of quantum computing has sparked a considerable increase in research attention to quantum technologies.These advances span fundamental theoretical inquiries into quantum information and the exploration of diverse applications arising from this evolving quantum computing paradigm.The scope of the related research is notably diverse.This paper consolidates and presents quantum computing research related to the financial sector.The finance applications considered in this study include portfolio optimization,fraud detection,and Monte Carlo methods for derivative pricing and risk calculation.In addition,we provide a comprehensive analysis of quantum computing’s applications and effects on blockchain technologies,particularly in relation to cryptocurrencies,which are central to financial technology research.As discussed in this study,quantum computing applications in finance are based on fundamental quantum physics principles and key quantum algorithms.This review aims to bridge the research gap between quantum computing and finance.We adopt a two-fold methodology,involving an analysis of quantum algorithms,followed by a discussion of their applications in specific financial contexts.Our study is based on an extensive review of online academic databases,search tools,online journal repositories,and whitepapers from 1952 to 2023,including CiteSeerX,DBLP,Research-Gate,Semantic Scholar,and scientific conference publications.We present state-of-theart findings at the intersection of finance and quantum technology and highlight open research questions that will be valuable for industry practitioners and academicians as they shape future research agendas.展开更多
Electric power systems provide the backbone of modern industrial societies.Enabling scalable grid analytics is the keystone to successfully operating large transmission and distribution systems.However,today’s power ...Electric power systems provide the backbone of modern industrial societies.Enabling scalable grid analytics is the keystone to successfully operating large transmission and distribution systems.However,today’s power systems are suffering from ever-increasing computational burdens in sustaining the expanding communities and deep integration of renewable energy resources,as well as managing huge volumes of data accordingly.These unprecedented challenges call for transformative analytics to support the resilient operations of power systems.Recently,the explosive growth of quantum computing techniques has ignited new hopes of revolutionizing power system computations.Quantum computing harnesses quantum mechanisms to solve traditionally intractable computational problems,which may lead to ultra-scalable and efficient power grid analytics.This paper reviews the newly emerging application of quantum computing techniques in power systems.We present a comprehensive overview of existing quantum-engineered power analytics from different operation perspectives,including static analysis,transient analysis,stochastic analysis,optimization,stability,and control.We thoroughly discuss the related quantum algorithms,their benefits and limitations,hardware implementations,and recommended practices.We also review the quantum networking techniques to ensure secure communication of power systems in the quantum era.Finally,we discuss challenges and future research directions.This paper will hopefully stimulate increasing attention to the development of quantum-engineered smart grids.展开更多
With a paper published in the 19 February 2025 issue of Nature[1],Microsoft(Redmond,WA,USA)fanned the flames of its unique vision for quantum computing:a stable,error-resistant qubit based on the Majorana fermion,one ...With a paper published in the 19 February 2025 issue of Nature[1],Microsoft(Redmond,WA,USA)fanned the flames of its unique vision for quantum computing:a stable,error-resistant qubit based on the Majorana fermion,one of the strangest and most elusive particles in physics.The Microsoft Azure Quantum research team’s descriptions of a means to detect the as-yet theoretical particles[1]—called“an entirely new state of matter”by Microsoft’s chief executive officer[2]—and a design for a chip powered by them(Fig.1)[3]have refocused attention on the company’s ambition to build a topological quantum computer.The approach—if it works—could potentially leapfrog every other in the field.展开更多
Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resourc...Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resource bottlenecks and increased energy consumption.This study aims to address these limitations by proposing the Quantum Inspired Adaptive Resource Management(QIARM)model,which introduces novel algorithms inspired by quantum principles for enhanced resource allocation.QIARM employs a quantum superposition-inspired technique for multi-state resource representation and an adaptive learning component to adjust resources in real time dynamically.In addition,an energy-aware scheduling module minimizes power consumption by selecting optimal configurations based on energy metrics.The simulation was carried out in a 360-minute environment with eight distinct scenarios.This study introduces a novel quantum-inspired resource management framework that achieves up to 98%task offload success and reduces energy consumption by 20%,addressing critical challenges of scalability and efficiency in dynamic fog computing environments.展开更多
In the 9 December 2024 issue of Nature[1],a team of Google engineers reported breakthrough results using“Willow”,their lat-est quantum computing chip(Fig.1).By meeting a milestone“below threshold”reduction in the ...In the 9 December 2024 issue of Nature[1],a team of Google engineers reported breakthrough results using“Willow”,their lat-est quantum computing chip(Fig.1).By meeting a milestone“below threshold”reduction in the rate of errors that plague super-conducting circuit-based quantum computing systems(Fig.2),the work moves the field another step towards its promised super-charged applications,albeit likely still many years away.Areas expected to benefit from quantum computing include,among others,drug discovery,materials science,finance,cybersecurity,and machine learning.展开更多
As a common foodborne pathogen,Salmonella poses risks to public health safety,common given the emergence of antimicrobial-resistant strains.However,there is currently a lack of systematic platforms based on large lang...As a common foodborne pathogen,Salmonella poses risks to public health safety,common given the emergence of antimicrobial-resistant strains.However,there is currently a lack of systematic platforms based on large language models(LLMs)for Salmonella resistance prediction,data presentation,and data sharing.To overcome this issue,we firstly propose a two-step feature-selection process based on the chi-square test and conditional mutual information maximization to find the key Salmonella resistance genes in a pan-genomics analysis and develop an LLM-based Salmonella antimicrobial-resistance predictive(SARPLLM)algorithm to achieve accurate antimicrobial-resistance prediction,based on Qwen2 LLM and low-rank adaptation.Secondly,we optimize the time complexity to compute the sample distance from the linear to logarithmic level by constructing a quantum data augmentation algorithm denoted as QSMOTEN.Thirdly,we build up a user-friendly Salmonella antimicrobial-resistance predictive online platform based on knowledge graphs,which not only facilitates online resistance prediction for users but also visualizes the pan-genomics analysis results of the Salmonella datasets.展开更多
Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hami...Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hamiltonians on the IBM quantum computer. We developed quantum circuits to simulate these systems more efficiently for both closed and open boundary Ising models, with and without perturbations. We tested these various geometries of systems in both 1-D and 2-D space to mimic two real systems: magnetic materials and biological neural networks (BNNs). Our quantum model is more efficient than classical computers, which can struggle to simulate large, complex systems of particles.展开更多
Shor proposed a quantum polynomial-time integer factorization algorithm to break the RSA public-key cryptosystem.In this paper,we propose a new quantum algorithm for breaking RSA by computing the order of the RSA ciph...Shor proposed a quantum polynomial-time integer factorization algorithm to break the RSA public-key cryptosystem.In this paper,we propose a new quantum algorithm for breaking RSA by computing the order of the RSA ciphertext C.The new algorithm has the following properties:1)recovering the RSA plaintext M from the ciphertext C without factoring n; 2)avoiding the even order of the element; 3)having higher success probability than Shor's; 4)having the same complexity as Shor's.展开更多
The quantum nature of bulk ensemble NMR quantum computing — the center of recent heated debate, is addressed. Concepts of the mixed state and entanglement are examined, and the data in a two-qubit liquid NMR quantum ...The quantum nature of bulk ensemble NMR quantum computing — the center of recent heated debate, is addressed. Concepts of the mixed state and entanglement are examined, and the data in a two-qubit liquid NMR quantum computation are analyzed. The main points in this paper are: i) Density matrix describes the 'state' of an average particle in an ensemble. It does not describe the state of an individual particle in an ensemble; ii) Entanglement is a property of the wave function of a microscopic particle (such as a molecule in a liquid NMR sample), and separability of the density matrix cannot be used to measure the entanglement of mixed ensemble; iii) The state evolution in bulk-ensemble NMR quantum computation is quantum-mechanical; iv) The coefficient before the effective pure state density matrix, ?, is a measure of the simultaneity of the molecules in an ensemble. It reflects the intensity of the NMR signal and has no significance in quantifying the entanglement in the bulk ensemble NMR system. The decomposition of the density matrix into product states is only an indication that the ensemble can be prepared by an ensemble with the particles unentangled. We conclude that effective-pure-state NMR quantum computation is genuine, not just classical simulations.展开更多
Nuclear physics,whose underling theory is described by quantum gauge field coupled with matter,is fundamentally important and yet is formidably challenge for simulation with classical computers.Quantum computing provi...Nuclear physics,whose underling theory is described by quantum gauge field coupled with matter,is fundamentally important and yet is formidably challenge for simulation with classical computers.Quantum computing provides a perhaps transformative approach for studying and understanding nuclear physics.With rapid scaling-up of quantum processors as well as advances on quantum algorithms,the digital quantum simulation approach for simulating quantum gauge fields and nuclear physics has gained lots of attention.In this review,we aim to summarize recent efforts on solving nuclear physics with quantum computers.We first discuss a formulation of nuclear physics in the language of quantum computing.In particular,we review how quantum gauge fields(both Abelian and non-Abelian)and their coupling to matter field can be mapped and studied on a quantum computer.We then introduce related quantum algorithms for solving static properties and real-time evolution for quantum systems,and show their applications for a broad range of problems in nuclear physics,including simulation of lattice gauge field,solving nucleon and nuclear structures,quantum advantage for simulating scattering in quantum field theory,non-equilibrium dynamics,and so on.Finally,a short outlook on future work is given.展开更多
High-fidelity quantum logic gates are essential in quantum computation,and both photons and electron spins in quantum dots(QDs)have their own unique advantages in implementing quantum computation.It is of critical sig...High-fidelity quantum logic gates are essential in quantum computation,and both photons and electron spins in quantum dots(QDs)have their own unique advantages in implementing quantum computation.It is of critical significance to achieve high-fidelity quantum gates for photon-QD hybrid systems.Here,we propose two schemes for implementing high-fidelity universal quantum gates including Toffoli gate and Fredkin gate for photon-QD hybrid systems,utilizing the practical scattering of a single photon off a QD-cavity system.The computation errors from the imperfections involved in the practical scattering are detected and prevented from arising in the final results of the two gates.Accordingly,the unity fidelity of each quantum gate is obtained in the nearly realistic condition,and the requirement for experimental realization is relaxed.Furthermore,the quantum circuits for the two gates are compact and no auxiliary qubits are required,which would also be the advantages regarding their experimental feasibility.These features indicate that our schemes may be useful in the practical quantum computation tasks.展开更多
Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-ve...Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-vector product,matrix-matrix product,the sum of two matrices,and the calculation of determinant and inverse matrix.We encode the matrix entries into the probability amplitudes of the pure initial states of senders.After applying proper unitary transformation to the complete quantum system,the desired result can be found in certain blocks of the receiver’s density matrix.These quantum protocols can be used as subroutines in other quantum schemes.Furthermore,we present an alternative quantum algorithm for solving linear systems of equations.展开更多
The well-known Riccati differential equations play a key role in many fields,including problems in protein folding,control and stabilization,stochastic control,and cybersecurity(risk analysis and malware propaga-tion)...The well-known Riccati differential equations play a key role in many fields,including problems in protein folding,control and stabilization,stochastic control,and cybersecurity(risk analysis and malware propaga-tion).Quantum computer algorithms have the potential to implement faster approximate solutions to the Riccati equations compared with strictly classical algorithms.While systems with many qubits are still under development,there is significant interest in developing algorithms for near-term quantum computers to determine their accuracy and limitations.In this paper,we propose a hybrid quantum-classical algorithm,the Matrix Riccati Solver(MRS).This approach uses a transformation of variables to turn a set of nonlinear differential equation into a set of approximate linear differential equations(i.e.,second order non-constant coefficients)which can in turn be solved using a version of the Harrow-Hassidim-Lloyd(HHL)quantum algorithm for the case of Hermitian matrices.We implement this approach using the Qiskit language and compute near-term results using a 4 qubit IBM Q System quantum computer.Comparisons with classical results and areas for future research are discussed.展开更多
We describe a scheme for universal quantum computation with Majorana fermions. We investigate two possible dissipative couplings of Majorana fermions to external systems, including metallic leads and local phonons. Wh...We describe a scheme for universal quantum computation with Majorana fermions. We investigate two possible dissipative couplings of Majorana fermions to external systems, including metallic leads and local phonons. While the dissipation when coupling to metallic leads to uninteresting states for the Majorana fermions, we show that coupling the Majorana fermions to local phonons allows to generate arbitrary dissipations and therefore universal quantum operations on a single QuBit that can be enhanced by additional two-QuBit operations.展开更多
Quantum Computing and Quantum Information Science seem very promising and developing rapidly since its inception in early 1980s by Paul Benioff with the proposal of quantum mechanical model of the Turing machine and l...Quantum Computing and Quantum Information Science seem very promising and developing rapidly since its inception in early 1980s by Paul Benioff with the proposal of quantum mechanical model of the Turing machine and later By Richard Feynman and Yuri Manin for the proposal of a quantum computers for simulating various problems that classical computer could not.Quantum computers have a computational advantage for some problems,over classical computers and most applications are trying to use an efficient combination of classical and quantum computers like Shor’s factoring algorithm.Other areas that are expected to be benefitted from quantum computing are Machine Learning and deep learning,molecular biology,genomics and cancer research,space exploration,atomic and nuclear research and macro-economic forecasting.This paper represents a brief overview of the state of art of quantum computing and quantum information science with discussions of various theoretical and experimental aspects adopted by the researchers.展开更多
The potential impact of quantum computing on various industries such as finance, healthcare, cryptography, and transportation is significant;therefore, sectors face challenges in understanding where to start because o...The potential impact of quantum computing on various industries such as finance, healthcare, cryptography, and transportation is significant;therefore, sectors face challenges in understanding where to start because of the complex nature of this technology. Starting early to explore what is supposed to be done is crucial for providing sectors with the necessary knowledge, tools, and processes to keep pace with rapid advancements in quantum computing. This article emphasizes the importance of consultancy and governance solutions that aid sectors in preparing for the quantum computing revolution. The article begins by discussing the reasons why sectors need to be prepared for quantum computing and emphasizes the importance of proactive preparation. It illustrates this point by providing a real-world example of a partnership. Subsequently, the article mentioned the benefits of quantum computing readiness, including increased competitiveness, improved security, and structured data. In addition, this article discusses the steps that various sectors can take to achieve quantum readiness, considering the potential risks and opportunities in industries. The proposed solutions for achieving quantum computing readiness include establishing a quantum computing office, contracting with major quantum computing companies, and learning from quantum computing organizations. This article provides the detailed advantages and disadvantages of each of these steps and emphasizes the need to carefully evaluate their potential drawbacks to ensure that they align with the sector’s unique needs, goals, and available resources. Finally, this article proposes various solutions and recommendations for sectors to achieve quantum-computing readiness.展开更多
Verification in quantum computations is crucial since quantum systems are extremely vulnerable to the environment.However,verifying directly the output of a quantum computation is difficult since we know that efficien...Verification in quantum computations is crucial since quantum systems are extremely vulnerable to the environment.However,verifying directly the output of a quantum computation is difficult since we know that efficiently simulating a large-scale quantum computation on a classical computer is usually thought to be impossible.To overcome this difficulty,we propose a self-testing system for quantum computations,which can be used to verify if a quantum computation is performed correctly by itself.Our basic idea is using some extra ancilla qubits to test the output of the computation.We design two kinds of permutation circuits into the original quantum circuit:one is applied on the ancilla qubits whose output indicates the testing information,the other is applied on all qubits(including ancilla qubits) which is aiming to uniformly permute the positions of all qubits.We show that both permutation circuits are easy to achieve.By this way,we prove that any quantum computation has an efficient self-testing system.In the end,we also discuss the relation between our self-testing system and interactive proof systems,and show that the two systems are equivalent if the verifier is allowed to have some quantum capacity.展开更多
This paper explores the potential of controlling quantum systems by introducing ancillary systems and then performing unitary operation on the resulting composite systems. It generalizes the concept of pure state cont...This paper explores the potential of controlling quantum systems by introducing ancillary systems and then performing unitary operation on the resulting composite systems. It generalizes the concept of pure state controllability for quantum systems and establishes the link between the operator controllability of the composite system and the generalized pure state controllability of its subsystem. It is constructively demonstrated that if a composite quantum system can be transferred between any pair of orthonormal pure vectors, then its subsystem is generalized pure-state controllable. Furthermore, the unitary operation and the coherent control can be concretely given to transfer the system from an initial state to the target state. Therefore, these properties may be potentially applied in quantum information, such as manipulating multiple quantum bits and creating entangled pure states. A concrete example has been given to illustrate that a maximally entangled pure state of a quantum system can be generated by introducing an ancillary system and performing open-loop coherent control on the resulting composite system.展开更多
As superconducting quantum computing continues to advance at an unprecedented pace,there is a compelling demand for the innovation of specialized electronic instruments that act as crucial conduits between quantum pro...As superconducting quantum computing continues to advance at an unprecedented pace,there is a compelling demand for the innovation of specialized electronic instruments that act as crucial conduits between quantum processors and host computers.Here,we introduce a microwave measurement and control system(M^(2)CS)dedicated to large-scale superconducting quantum processors.M^(2)CS features a compact modular design that balances overall performance,scalability and flexibility.Electronic tests of M^(2)CS show key metrics comparable to commercial instruments.Benchmark tests on transmon superconducting qubits further show qubit coherence and gate fidelities comparable to state-of-the-art results,confirming M^(2)CS's capability to meet the stringent requirements of quantum experiments running on intermediate-scale quantum processors.The compact and scalable nature of our design holds the potential to support over 1000 qubits after upgrade in stability and integration.The M^(2)CS architecture may also be adopted to a wider range of scenarios,including other quantum computing platforms such as trapped ions and silicon quantum dots,as well as more traditional applications like microwave kinetic inductance detectors and phased array radar systems.展开更多
文摘A subdynamics theory framework for describing multi coupled quantum computing systems is presented first. A general kinetic equation for the reduced system is given then, enabling a sufficient condition to be formulated for constructing a pure coherent quantum computing system. This reveals that using multi coupled systems to perform quantum computing in Rigged Liouville Space opens the door to controlling or eliminating the intrinsic de coherence of quantum computing systems.
基金Gerhard Hellstern is partly funded by the Ministry of Economic Affairs,Labour and Tourism Baden-Württemberg in the frame of the Competence Center Quantum Computing Baden-Württemberg(QORA Ⅱ).
文摘The rapid advancement of quantum computing has sparked a considerable increase in research attention to quantum technologies.These advances span fundamental theoretical inquiries into quantum information and the exploration of diverse applications arising from this evolving quantum computing paradigm.The scope of the related research is notably diverse.This paper consolidates and presents quantum computing research related to the financial sector.The finance applications considered in this study include portfolio optimization,fraud detection,and Monte Carlo methods for derivative pricing and risk calculation.In addition,we provide a comprehensive analysis of quantum computing’s applications and effects on blockchain technologies,particularly in relation to cryptocurrencies,which are central to financial technology research.As discussed in this study,quantum computing applications in finance are based on fundamental quantum physics principles and key quantum algorithms.This review aims to bridge the research gap between quantum computing and finance.We adopt a two-fold methodology,involving an analysis of quantum algorithms,followed by a discussion of their applications in specific financial contexts.Our study is based on an extensive review of online academic databases,search tools,online journal repositories,and whitepapers from 1952 to 2023,including CiteSeerX,DBLP,Research-Gate,Semantic Scholar,and scientific conference publications.We present state-of-theart findings at the intersection of finance and quantum technology and highlight open research questions that will be valuable for industry practitioners and academicians as they shape future research agendas.
基金supported in part by the Advanced Grid Modeling Program under U.S.Department of Energy’s Office of Electricity under Agreement No.37533(P.Z.)in part by Stony Brook Uni-versity’s Office of the Vice President for Research through a Quantum Information Science and Technology Seed Grant(P.Z.)in part by the National Science Foundation under Grant No.PHY 1915165(T.-C.W.).
文摘Electric power systems provide the backbone of modern industrial societies.Enabling scalable grid analytics is the keystone to successfully operating large transmission and distribution systems.However,today’s power systems are suffering from ever-increasing computational burdens in sustaining the expanding communities and deep integration of renewable energy resources,as well as managing huge volumes of data accordingly.These unprecedented challenges call for transformative analytics to support the resilient operations of power systems.Recently,the explosive growth of quantum computing techniques has ignited new hopes of revolutionizing power system computations.Quantum computing harnesses quantum mechanisms to solve traditionally intractable computational problems,which may lead to ultra-scalable and efficient power grid analytics.This paper reviews the newly emerging application of quantum computing techniques in power systems.We present a comprehensive overview of existing quantum-engineered power analytics from different operation perspectives,including static analysis,transient analysis,stochastic analysis,optimization,stability,and control.We thoroughly discuss the related quantum algorithms,their benefits and limitations,hardware implementations,and recommended practices.We also review the quantum networking techniques to ensure secure communication of power systems in the quantum era.Finally,we discuss challenges and future research directions.This paper will hopefully stimulate increasing attention to the development of quantum-engineered smart grids.
文摘With a paper published in the 19 February 2025 issue of Nature[1],Microsoft(Redmond,WA,USA)fanned the flames of its unique vision for quantum computing:a stable,error-resistant qubit based on the Majorana fermion,one of the strangest and most elusive particles in physics.The Microsoft Azure Quantum research team’s descriptions of a means to detect the as-yet theoretical particles[1]—called“an entirely new state of matter”by Microsoft’s chief executive officer[2]—and a design for a chip powered by them(Fig.1)[3]have refocused attention on the company’s ambition to build a topological quantum computer.The approach—if it works—could potentially leapfrog every other in the field.
基金funded by Researchers Supporting Project Number(RSPD2025R947)King Saud University,Riyadh,Saudi Arabia.
文摘Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resource bottlenecks and increased energy consumption.This study aims to address these limitations by proposing the Quantum Inspired Adaptive Resource Management(QIARM)model,which introduces novel algorithms inspired by quantum principles for enhanced resource allocation.QIARM employs a quantum superposition-inspired technique for multi-state resource representation and an adaptive learning component to adjust resources in real time dynamically.In addition,an energy-aware scheduling module minimizes power consumption by selecting optimal configurations based on energy metrics.The simulation was carried out in a 360-minute environment with eight distinct scenarios.This study introduces a novel quantum-inspired resource management framework that achieves up to 98%task offload success and reduces energy consumption by 20%,addressing critical challenges of scalability and efficiency in dynamic fog computing environments.
文摘In the 9 December 2024 issue of Nature[1],a team of Google engineers reported breakthrough results using“Willow”,their lat-est quantum computing chip(Fig.1).By meeting a milestone“below threshold”reduction in the rate of errors that plague super-conducting circuit-based quantum computing systems(Fig.2),the work moves the field another step towards its promised super-charged applications,albeit likely still many years away.Areas expected to benefit from quantum computing include,among others,drug discovery,materials science,finance,cybersecurity,and machine learning.
基金supported by the National Science and Technology Major Project(2021YFF1201200)the National Natural Science Foundation of China(62372316)the Sichuan Science and Technology Program key project(2024YFHZ0091).
文摘As a common foodborne pathogen,Salmonella poses risks to public health safety,common given the emergence of antimicrobial-resistant strains.However,there is currently a lack of systematic platforms based on large language models(LLMs)for Salmonella resistance prediction,data presentation,and data sharing.To overcome this issue,we firstly propose a two-step feature-selection process based on the chi-square test and conditional mutual information maximization to find the key Salmonella resistance genes in a pan-genomics analysis and develop an LLM-based Salmonella antimicrobial-resistance predictive(SARPLLM)algorithm to achieve accurate antimicrobial-resistance prediction,based on Qwen2 LLM and low-rank adaptation.Secondly,we optimize the time complexity to compute the sample distance from the linear to logarithmic level by constructing a quantum data augmentation algorithm denoted as QSMOTEN.Thirdly,we build up a user-friendly Salmonella antimicrobial-resistance predictive online platform based on knowledge graphs,which not only facilitates online resistance prediction for users but also visualizes the pan-genomics analysis results of the Salmonella datasets.
文摘Quantum computing is a field with increasing relevance as quantum hardware improves and more applications of quantum computing are discovered. In this paper, we demonstrate the feasibility of modeling Ising Model Hamiltonians on the IBM quantum computer. We developed quantum circuits to simulate these systems more efficiently for both closed and open boundary Ising models, with and without perturbations. We tested these various geometries of systems in both 1-D and 2-D space to mimic two real systems: magnetic materials and biological neural networks (BNNs). Our quantum model is more efficient than classical computers, which can struggle to simulate large, complex systems of particles.
基金Supported by the National Natural Science Foundation of China(61303212,61202386)the State Key Program of National Natural Science of China(61332019)the Major Research Plan of the National Natural Science Foundation of China(91018008,SKLSE-2015-A-02)
文摘Shor proposed a quantum polynomial-time integer factorization algorithm to break the RSA public-key cryptosystem.In this paper,we propose a new quantum algorithm for breaking RSA by computing the order of the RSA ciphertext C.The new algorithm has the following properties:1)recovering the RSA plaintext M from the ciphertext C without factoring n; 2)avoiding the even order of the element; 3)having higher success probability than Shor's; 4)having the same complexity as Shor's.
文摘The quantum nature of bulk ensemble NMR quantum computing — the center of recent heated debate, is addressed. Concepts of the mixed state and entanglement are examined, and the data in a two-qubit liquid NMR quantum computation are analyzed. The main points in this paper are: i) Density matrix describes the 'state' of an average particle in an ensemble. It does not describe the state of an individual particle in an ensemble; ii) Entanglement is a property of the wave function of a microscopic particle (such as a molecule in a liquid NMR sample), and separability of the density matrix cannot be used to measure the entanglement of mixed ensemble; iii) The state evolution in bulk-ensemble NMR quantum computation is quantum-mechanical; iv) The coefficient before the effective pure state density matrix, ?, is a measure of the simultaneity of the molecules in an ensemble. It reflects the intensity of the NMR signal and has no significance in quantifying the entanglement in the bulk ensemble NMR system. The decomposition of the density matrix into product states is only an indication that the ensemble can be prepared by an ensemble with the particles unentangled. We conclude that effective-pure-state NMR quantum computation is genuine, not just classical simulations.
基金Project supported by the Key-Area Research and Development Program of Guang Dong Province,China(Grant No.2019B030330001)Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030008)+2 种基金the National Natural Science Foundation of China(Grant Nos.12074180,12005065,12022512,and 12035007)the Key Project of Science and Technology of Guangzhou(Grant Nos.201804020055 and 2019050001)the National Key Research and Development Program of China(Grant No.2016YFA0301800)。
文摘Nuclear physics,whose underling theory is described by quantum gauge field coupled with matter,is fundamentally important and yet is formidably challenge for simulation with classical computers.Quantum computing provides a perhaps transformative approach for studying and understanding nuclear physics.With rapid scaling-up of quantum processors as well as advances on quantum algorithms,the digital quantum simulation approach for simulating quantum gauge fields and nuclear physics has gained lots of attention.In this review,we aim to summarize recent efforts on solving nuclear physics with quantum computers.We first discuss a formulation of nuclear physics in the language of quantum computing.In particular,we review how quantum gauge fields(both Abelian and non-Abelian)and their coupling to matter field can be mapped and studied on a quantum computer.We then introduce related quantum algorithms for solving static properties and real-time evolution for quantum systems,and show their applications for a broad range of problems in nuclear physics,including simulation of lattice gauge field,solving nucleon and nuclear structures,quantum advantage for simulating scattering in quantum field theory,non-equilibrium dynamics,and so on.Finally,a short outlook on future work is given.
基金the National Natural Science Foundation of China(Grant No.12004029).
文摘High-fidelity quantum logic gates are essential in quantum computation,and both photons and electron spins in quantum dots(QDs)have their own unique advantages in implementing quantum computation.It is of critical significance to achieve high-fidelity quantum gates for photon-QD hybrid systems.Here,we propose two schemes for implementing high-fidelity universal quantum gates including Toffoli gate and Fredkin gate for photon-QD hybrid systems,utilizing the practical scattering of a single photon off a QD-cavity system.The computation errors from the imperfections involved in the practical scattering are detected and prevented from arising in the final results of the two gates.Accordingly,the unity fidelity of each quantum gate is obtained in the nearly realistic condition,and the requirement for experimental realization is relaxed.Furthermore,the quantum circuits for the two gates are compact and no auxiliary qubits are required,which would also be the advantages regarding their experimental feasibility.These features indicate that our schemes may be useful in the practical quantum computation tasks.
基金supported by the National Natural Science Foundation of China(Grant No.12031004 and Grant No.12271474,61877054)the Fundamental Research Foundation for the Central Universities(Project No.K20210337)+1 种基金the Zhejiang University Global Partnership Fund,188170+194452119/003partially funded by a state task of Russian Fundamental Investigations(State Registration No.FFSG-2024-0002)。
文摘Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-vector product,matrix-matrix product,the sum of two matrices,and the calculation of determinant and inverse matrix.We encode the matrix entries into the probability amplitudes of the pure initial states of senders.After applying proper unitary transformation to the complete quantum system,the desired result can be found in certain blocks of the receiver’s density matrix.These quantum protocols can be used as subroutines in other quantum schemes.Furthermore,we present an alternative quantum algorithm for solving linear systems of equations.
文摘The well-known Riccati differential equations play a key role in many fields,including problems in protein folding,control and stabilization,stochastic control,and cybersecurity(risk analysis and malware propaga-tion).Quantum computer algorithms have the potential to implement faster approximate solutions to the Riccati equations compared with strictly classical algorithms.While systems with many qubits are still under development,there is significant interest in developing algorithms for near-term quantum computers to determine their accuracy and limitations.In this paper,we propose a hybrid quantum-classical algorithm,the Matrix Riccati Solver(MRS).This approach uses a transformation of variables to turn a set of nonlinear differential equation into a set of approximate linear differential equations(i.e.,second order non-constant coefficients)which can in turn be solved using a version of the Harrow-Hassidim-Lloyd(HHL)quantum algorithm for the case of Hermitian matrices.We implement this approach using the Qiskit language and compute near-term results using a 4 qubit IBM Q System quantum computer.Comparisons with classical results and areas for future research are discussed.
文摘We describe a scheme for universal quantum computation with Majorana fermions. We investigate two possible dissipative couplings of Majorana fermions to external systems, including metallic leads and local phonons. While the dissipation when coupling to metallic leads to uninteresting states for the Majorana fermions, we show that coupling the Majorana fermions to local phonons allows to generate arbitrary dissipations and therefore universal quantum operations on a single QuBit that can be enhanced by additional two-QuBit operations.
文摘Quantum Computing and Quantum Information Science seem very promising and developing rapidly since its inception in early 1980s by Paul Benioff with the proposal of quantum mechanical model of the Turing machine and later By Richard Feynman and Yuri Manin for the proposal of a quantum computers for simulating various problems that classical computer could not.Quantum computers have a computational advantage for some problems,over classical computers and most applications are trying to use an efficient combination of classical and quantum computers like Shor’s factoring algorithm.Other areas that are expected to be benefitted from quantum computing are Machine Learning and deep learning,molecular biology,genomics and cancer research,space exploration,atomic and nuclear research and macro-economic forecasting.This paper represents a brief overview of the state of art of quantum computing and quantum information science with discussions of various theoretical and experimental aspects adopted by the researchers.
文摘The potential impact of quantum computing on various industries such as finance, healthcare, cryptography, and transportation is significant;therefore, sectors face challenges in understanding where to start because of the complex nature of this technology. Starting early to explore what is supposed to be done is crucial for providing sectors with the necessary knowledge, tools, and processes to keep pace with rapid advancements in quantum computing. This article emphasizes the importance of consultancy and governance solutions that aid sectors in preparing for the quantum computing revolution. The article begins by discussing the reasons why sectors need to be prepared for quantum computing and emphasizes the importance of proactive preparation. It illustrates this point by providing a real-world example of a partnership. Subsequently, the article mentioned the benefits of quantum computing readiness, including increased competitiveness, improved security, and structured data. In addition, this article discusses the steps that various sectors can take to achieve quantum readiness, considering the potential risks and opportunities in industries. The proposed solutions for achieving quantum computing readiness include establishing a quantum computing office, contracting with major quantum computing companies, and learning from quantum computing organizations. This article provides the detailed advantages and disadvantages of each of these steps and emphasizes the need to carefully evaluate their potential drawbacks to ensure that they align with the sector’s unique needs, goals, and available resources. Finally, this article proposes various solutions and recommendations for sectors to achieve quantum-computing readiness.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372076,61971348,and 62001351)Foundation of Shaanxi Key Laboratory of Information Communication Network and Security(Grant No.ICNS201802)+1 种基金Natural Science Basic Research Program of Shaanxi,China(Grant No.2021JM-142)Key Research and Development Program of Shaanxi Province,China(Grant No.2019ZDLGY09-02)。
文摘Verification in quantum computations is crucial since quantum systems are extremely vulnerable to the environment.However,verifying directly the output of a quantum computation is difficult since we know that efficiently simulating a large-scale quantum computation on a classical computer is usually thought to be impossible.To overcome this difficulty,we propose a self-testing system for quantum computations,which can be used to verify if a quantum computation is performed correctly by itself.Our basic idea is using some extra ancilla qubits to test the output of the computation.We design two kinds of permutation circuits into the original quantum circuit:one is applied on the ancilla qubits whose output indicates the testing information,the other is applied on all qubits(including ancilla qubits) which is aiming to uniformly permute the positions of all qubits.We show that both permutation circuits are easy to achieve.By this way,we prove that any quantum computation has an efficient self-testing system.In the end,we also discuss the relation between our self-testing system and interactive proof systems,and show that the two systems are equivalent if the verifier is allowed to have some quantum capacity.
基金Project supported by the National Natural Science Foundation of China (Grant No 60674040) and the National Natural Science Fund for Distinguished Young Scholars (Grant No 60225015).
文摘This paper explores the potential of controlling quantum systems by introducing ancillary systems and then performing unitary operation on the resulting composite systems. It generalizes the concept of pure state controllability for quantum systems and establishes the link between the operator controllability of the composite system and the generalized pure state controllability of its subsystem. It is constructively demonstrated that if a composite quantum system can be transferred between any pair of orthonormal pure vectors, then its subsystem is generalized pure-state controllable. Furthermore, the unitary operation and the coherent control can be concretely given to transfer the system from an initial state to the target state. Therefore, these properties may be potentially applied in quantum information, such as manipulating multiple quantum bits and creating entangled pure states. A concrete example has been given to illustrate that a maximally entangled pure state of a quantum system can be generated by introducing an ancillary system and performing open-loop coherent control on the resulting composite system.
基金supported by the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant Nos.KQTD20210811090049034,RCBS20231211090824040,and RCBS20231211090815032)the National Natural Science Foundation of China(Grant Nos.12174178,12204228,12374474,and 123b2071)+2 种基金the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301703)the Shenzhen-Hong Kong Cooperation Zone for Technology and Innovation(Grant No.HZQB-KCZYB-2020050)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2024A1515011714 and 2022A1515110615)。
文摘As superconducting quantum computing continues to advance at an unprecedented pace,there is a compelling demand for the innovation of specialized electronic instruments that act as crucial conduits between quantum processors and host computers.Here,we introduce a microwave measurement and control system(M^(2)CS)dedicated to large-scale superconducting quantum processors.M^(2)CS features a compact modular design that balances overall performance,scalability and flexibility.Electronic tests of M^(2)CS show key metrics comparable to commercial instruments.Benchmark tests on transmon superconducting qubits further show qubit coherence and gate fidelities comparable to state-of-the-art results,confirming M^(2)CS's capability to meet the stringent requirements of quantum experiments running on intermediate-scale quantum processors.The compact and scalable nature of our design holds the potential to support over 1000 qubits after upgrade in stability and integration.The M^(2)CS architecture may also be adopted to a wider range of scenarios,including other quantum computing platforms such as trapped ions and silicon quantum dots,as well as more traditional applications like microwave kinetic inductance detectors and phased array radar systems.