期刊文献+
共找到350篇文章
< 1 2 18 >
每页显示 20 50 100
Scaled Up Chip Pushes Quantum Computing a Bit Closer to Reality
1
作者 Chris Palmer 《Engineering》 2025年第7期6-8,共3页
In the 9 December 2024 issue of Nature[1],a team of Google engineers reported breakthrough results using“Willow”,their lat-est quantum computing chip(Fig.1).By meeting a milestone“below threshold”reduction in the ... In the 9 December 2024 issue of Nature[1],a team of Google engineers reported breakthrough results using“Willow”,their lat-est quantum computing chip(Fig.1).By meeting a milestone“below threshold”reduction in the rate of errors that plague super-conducting circuit-based quantum computing systems(Fig.2),the work moves the field another step towards its promised super-charged applications,albeit likely still many years away.Areas expected to benefit from quantum computing include,among others,drug discovery,materials science,finance,cybersecurity,and machine learning. 展开更多
关键词 materials science BREAKTHROUGH drug discovery willow chip quantum computing superconducting circuits error reduction applications
在线阅读 下载PDF
Quantum Computing Gamble Bets on Stealthy Majorana Qubits
2
作者 Chris Palmer 《Engineering》 2025年第12期8-10,共3页
With a paper published in the 19 February 2025 issue of Nature[1],Microsoft(Redmond,WA,USA)fanned the flames of its unique vision for quantum computing:a stable,error-resistant qubit based on the Majorana fermion,one ... With a paper published in the 19 February 2025 issue of Nature[1],Microsoft(Redmond,WA,USA)fanned the flames of its unique vision for quantum computing:a stable,error-resistant qubit based on the Majorana fermion,one of the strangest and most elusive particles in physics.The Microsoft Azure Quantum research team’s descriptions of a means to detect the as-yet theoretical particles[1]—called“an entirely new state of matter”by Microsoft’s chief executive officer[2]—and a design for a chip powered by them(Fig.1)[3]have refocused attention on the company’s ambition to build a topological quantum computer.The approach—if it works—could potentially leapfrog every other in the field. 展开更多
关键词 stealthy qubits topological quantum computer majorana fermions stable qubits majorana fermionone error resistant qubits quantum computing microsoft azure
在线阅读 下载PDF
From portfolio optimization to quantum blockchain and security: a systematic review of quantum computing in finance
3
作者 Abha Satyavan Naik Esra Yeniaras +2 位作者 Gerhard Hellstern Grishma Prasad Sanjay Kumar Lalta Prasad Vishwakarma 《Financial Innovation》 2025年第1期2536-2602,共67页
The rapid advancement of quantum computing has sparked a considerable increase in research attention to quantum technologies.These advances span fundamental theoretical inquiries into quantum information and the explo... The rapid advancement of quantum computing has sparked a considerable increase in research attention to quantum technologies.These advances span fundamental theoretical inquiries into quantum information and the exploration of diverse applications arising from this evolving quantum computing paradigm.The scope of the related research is notably diverse.This paper consolidates and presents quantum computing research related to the financial sector.The finance applications considered in this study include portfolio optimization,fraud detection,and Monte Carlo methods for derivative pricing and risk calculation.In addition,we provide a comprehensive analysis of quantum computing’s applications and effects on blockchain technologies,particularly in relation to cryptocurrencies,which are central to financial technology research.As discussed in this study,quantum computing applications in finance are based on fundamental quantum physics principles and key quantum algorithms.This review aims to bridge the research gap between quantum computing and finance.We adopt a two-fold methodology,involving an analysis of quantum algorithms,followed by a discussion of their applications in specific financial contexts.Our study is based on an extensive review of online academic databases,search tools,online journal repositories,and whitepapers from 1952 to 2023,including CiteSeerX,DBLP,Research-Gate,Semantic Scholar,and scientific conference publications.We present state-of-theart findings at the intersection of finance and quantum technology and highlight open research questions that will be valuable for industry practitioners and academicians as they shape future research agendas. 展开更多
关键词 Portfolio optimization Fraud detection Derivative pricing Risk calculation Monte carlo quantum blockchain quantum-resistant blockchain Digital signature algorithms Post-quantum cryptography SECURITY Privacy-preserving blockchain quantum computing
在线阅读 下载PDF
Developing a Predictive Platform for Salmonella Antimicrobial Resistance Based on a Large Language Model and Quantum Computing
4
作者 Yujie You Kan Tan +1 位作者 Zekun Jiang Le Zhang 《Engineering》 2025年第5期174-184,共11页
As a common foodborne pathogen,Salmonella poses risks to public health safety,common given the emergence of antimicrobial-resistant strains.However,there is currently a lack of systematic platforms based on large lang... As a common foodborne pathogen,Salmonella poses risks to public health safety,common given the emergence of antimicrobial-resistant strains.However,there is currently a lack of systematic platforms based on large language models(LLMs)for Salmonella resistance prediction,data presentation,and data sharing.To overcome this issue,we firstly propose a two-step feature-selection process based on the chi-square test and conditional mutual information maximization to find the key Salmonella resistance genes in a pan-genomics analysis and develop an LLM-based Salmonella antimicrobial-resistance predictive(SARPLLM)algorithm to achieve accurate antimicrobial-resistance prediction,based on Qwen2 LLM and low-rank adaptation.Secondly,we optimize the time complexity to compute the sample distance from the linear to logarithmic level by constructing a quantum data augmentation algorithm denoted as QSMOTEN.Thirdly,we build up a user-friendly Salmonella antimicrobial-resistance predictive online platform based on knowledge graphs,which not only facilitates online resistance prediction for users but also visualizes the pan-genomics analysis results of the Salmonella datasets. 展开更多
关键词 Salmonella resistance prediction Pan-genomics Large language model quantum computing BIOINFORMATICS
在线阅读 下载PDF
Quantum Mechanical Nature in Liquid NMR Quantum Computing 被引量:1
5
作者 LONGGui-Lu YANHai-Yang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第3期305-308,共4页
The quantum nature of bulk ensemble NMR quantum computing — the center of recent heated debate, is addressed. Concepts of the mixed state and entanglement are examined, and the data in a two-qubit liquid NMR quantum ... The quantum nature of bulk ensemble NMR quantum computing — the center of recent heated debate, is addressed. Concepts of the mixed state and entanglement are examined, and the data in a two-qubit liquid NMR quantum computation are analyzed. The main points in this paper are: i) Density matrix describes the 'state' of an average particle in an ensemble. It does not describe the state of an individual particle in an ensemble; ii) Entanglement is a property of the wave function of a microscopic particle (such as a molecule in a liquid NMR sample), and separability of the density matrix cannot be used to measure the entanglement of mixed ensemble; iii) The state evolution in bulk-ensemble NMR quantum computation is quantum-mechanical; iv) The coefficient before the effective pure state density matrix, ?, is a measure of the simultaneity of the molecules in an ensemble. It reflects the intensity of the NMR signal and has no significance in quantifying the entanglement in the bulk ensemble NMR system. The decomposition of the density matrix into product states is only an indication that the ensemble can be prepared by an ensemble with the particles unentangled. We conclude that effective-pure-state NMR quantum computation is genuine, not just classical simulations. 展开更多
关键词 quantum mechanical nature NMR quantum computing mixed state ENTANGLEMENT
在线阅读 下载PDF
Selected topics of quantum computing for nuclear physics 被引量:1
6
作者 Dan-Bo Zhang Hongxi Xing +2 位作者 Hui Yan Enke Wang Shi-Liang Zhu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期23-34,共12页
Nuclear physics,whose underling theory is described by quantum gauge field coupled with matter,is fundamentally important and yet is formidably challenge for simulation with classical computers.Quantum computing provi... Nuclear physics,whose underling theory is described by quantum gauge field coupled with matter,is fundamentally important and yet is formidably challenge for simulation with classical computers.Quantum computing provides a perhaps transformative approach for studying and understanding nuclear physics.With rapid scaling-up of quantum processors as well as advances on quantum algorithms,the digital quantum simulation approach for simulating quantum gauge fields and nuclear physics has gained lots of attention.In this review,we aim to summarize recent efforts on solving nuclear physics with quantum computers.We first discuss a formulation of nuclear physics in the language of quantum computing.In particular,we review how quantum gauge fields(both Abelian and non-Abelian)and their coupling to matter field can be mapped and studied on a quantum computer.We then introduce related quantum algorithms for solving static properties and real-time evolution for quantum systems,and show their applications for a broad range of problems in nuclear physics,including simulation of lattice gauge field,solving nucleon and nuclear structures,quantum advantage for simulating scattering in quantum field theory,non-equilibrium dynamics,and so on.Finally,a short outlook on future work is given. 展开更多
关键词 quantum computing nuclear physics quantum field theory quantum simulation quantum algorithm
原文传递
Quantum computing in power systems 被引量:5
7
作者 Yifan Zhou Zefan Tang +5 位作者 Nima Nikmehr Pouya Babahajiani Fei Feng Tzu-Chieh Wei Honghao Zheng Peng Zhang 《iEnergy》 2022年第2期170-187,共18页
Electric power systems provide the backbone of modern industrial societies.Enabling scalable grid analytics is the keystone to successfully operating large transmission and distribution systems.However,today’s power ... Electric power systems provide the backbone of modern industrial societies.Enabling scalable grid analytics is the keystone to successfully operating large transmission and distribution systems.However,today’s power systems are suffering from ever-increasing computational burdens in sustaining the expanding communities and deep integration of renewable energy resources,as well as managing huge volumes of data accordingly.These unprecedented challenges call for transformative analytics to support the resilient operations of power systems.Recently,the explosive growth of quantum computing techniques has ignited new hopes of revolutionizing power system computations.Quantum computing harnesses quantum mechanisms to solve traditionally intractable computational problems,which may lead to ultra-scalable and efficient power grid analytics.This paper reviews the newly emerging application of quantum computing techniques in power systems.We present a comprehensive overview of existing quantum-engineered power analytics from different operation perspectives,including static analysis,transient analysis,stochastic analysis,optimization,stability,and control.We thoroughly discuss the related quantum algorithms,their benefits and limitations,hardware implementations,and recommended practices.We also review the quantum networking techniques to ensure secure communication of power systems in the quantum era.Finally,we discuss challenges and future research directions.This paper will hopefully stimulate increasing attention to the development of quantum-engineered smart grids. 展开更多
关键词 quantum computing power system variational quantum algorithms quantum optimization quantum machine learning quantum security
在线阅读 下载PDF
Near Term Hybrid Quantum Computing Solution to the Matrix Riccati Equations 被引量:1
8
作者 Augusto Gonzalez Bonorino Malick Ndiaye Casimer DeCusatis 《Journal of Quantum Computing》 2022年第3期135-146,共12页
The well-known Riccati differential equations play a key role in many fields,including problems in protein folding,control and stabilization,stochastic control,and cybersecurity(risk analysis and malware propaga-tion)... The well-known Riccati differential equations play a key role in many fields,including problems in protein folding,control and stabilization,stochastic control,and cybersecurity(risk analysis and malware propaga-tion).Quantum computer algorithms have the potential to implement faster approximate solutions to the Riccati equations compared with strictly classical algorithms.While systems with many qubits are still under development,there is significant interest in developing algorithms for near-term quantum computers to determine their accuracy and limitations.In this paper,we propose a hybrid quantum-classical algorithm,the Matrix Riccati Solver(MRS).This approach uses a transformation of variables to turn a set of nonlinear differential equation into a set of approximate linear differential equations(i.e.,second order non-constant coefficients)which can in turn be solved using a version of the Harrow-Hassidim-Lloyd(HHL)quantum algorithm for the case of Hermitian matrices.We implement this approach using the Qiskit language and compute near-term results using a 4 qubit IBM Q System quantum computer.Comparisons with classical results and areas for future research are discussed. 展开更多
关键词 quantum computing matrix ricatti equations differential equations qiskit hybrid algorithm HHL algorithm
在线阅读 下载PDF
Dissipative Quantum Computing with Majorana Fermions 被引量:1
9
作者 Henning Soller 《Journal of Applied Mathematics and Physics》 2016年第2期227-232,共6页
We describe a scheme for universal quantum computation with Majorana fermions. We investigate two possible dissipative couplings of Majorana fermions to external systems, including metallic leads and local phonons. Wh... We describe a scheme for universal quantum computation with Majorana fermions. We investigate two possible dissipative couplings of Majorana fermions to external systems, including metallic leads and local phonons. While the dissipation when coupling to metallic leads to uninteresting states for the Majorana fermions, we show that coupling the Majorana fermions to local phonons allows to generate arbitrary dissipations and therefore universal quantum operations on a single QuBit that can be enhanced by additional two-QuBit operations. 展开更多
关键词 Dissipative quantum computing Phonon Interaction Majorana Fermions Universal quantum Computation
在线阅读 下载PDF
A Critical Overview on Quantum Computing 被引量:1
10
作者 Saptarshi Sahoo Amit Kumar Mandal +2 位作者 Pijus Kanti Samanta Indranil Basu Pratik Roy 《Journal of Quantum Computing》 2020年第4期181-192,共12页
Quantum Computing and Quantum Information Science seem very promising and developing rapidly since its inception in early 1980s by Paul Benioff with the proposal of quantum mechanical model of the Turing machine and l... Quantum Computing and Quantum Information Science seem very promising and developing rapidly since its inception in early 1980s by Paul Benioff with the proposal of quantum mechanical model of the Turing machine and later By Richard Feynman and Yuri Manin for the proposal of a quantum computers for simulating various problems that classical computer could not.Quantum computers have a computational advantage for some problems,over classical computers and most applications are trying to use an efficient combination of classical and quantum computers like Shor’s factoring algorithm.Other areas that are expected to be benefitted from quantum computing are Machine Learning and deep learning,molecular biology,genomics and cancer research,space exploration,atomic and nuclear research and macro-economic forecasting.This paper represents a brief overview of the state of art of quantum computing and quantum information science with discussions of various theoretical and experimental aspects adopted by the researchers. 展开更多
关键词 quantum computing quantum information science
在线阅读 下载PDF
Accelerating Quantum Computing Readiness: Risk Management and Strategies for Sectors 被引量:1
11
作者 Abdullah Ibrahim Salman Alsalman 《Journal of Quantum Information Science》 2023年第2期33-44,共12页
The potential impact of quantum computing on various industries such as finance, healthcare, cryptography, and transportation is significant;therefore, sectors face challenges in understanding where to start because o... The potential impact of quantum computing on various industries such as finance, healthcare, cryptography, and transportation is significant;therefore, sectors face challenges in understanding where to start because of the complex nature of this technology. Starting early to explore what is supposed to be done is crucial for providing sectors with the necessary knowledge, tools, and processes to keep pace with rapid advancements in quantum computing. This article emphasizes the importance of consultancy and governance solutions that aid sectors in preparing for the quantum computing revolution. The article begins by discussing the reasons why sectors need to be prepared for quantum computing and emphasizes the importance of proactive preparation. It illustrates this point by providing a real-world example of a partnership. Subsequently, the article mentioned the benefits of quantum computing readiness, including increased competitiveness, improved security, and structured data. In addition, this article discusses the steps that various sectors can take to achieve quantum readiness, considering the potential risks and opportunities in industries. The proposed solutions for achieving quantum computing readiness include establishing a quantum computing office, contracting with major quantum computing companies, and learning from quantum computing organizations. This article provides the detailed advantages and disadvantages of each of these steps and emphasizes the need to carefully evaluate their potential drawbacks to ensure that they align with the sector’s unique needs, goals, and available resources. Finally, this article proposes various solutions and recommendations for sectors to achieve quantum-computing readiness. 展开更多
关键词 quantum computing CONSULTANCY Governance Solutions quantum Readiness Benefits of quantum Readiness Increased Competitiveness Improved Security Structured Data quantum Algorithms quantum Service Provider CYBERSECURITY Data Management
在线阅读 下载PDF
A Novel Scheduling Framework for Multi-Programming Quantum Computing in Cloud Environment
12
作者 Danyang Zheng Jinchen Xv +3 位作者 Feng Yue Qiming Du ZhihengWang Zheng Shan 《Computers, Materials & Continua》 SCIE EI 2024年第5期1957-1974,共18页
As cloud quantum computing gains broader acceptance,a growing quantity of researchers are directing their focus towards this domain.Nevertheless,the rapid surge in demand for cloud-based quantum computing resources ha... As cloud quantum computing gains broader acceptance,a growing quantity of researchers are directing their focus towards this domain.Nevertheless,the rapid surge in demand for cloud-based quantum computing resources has led to a scarcity,which in turn hampers users from achieving optimal satisfaction.Therefore,cloud quantum computing service providers require a unified analysis and scheduling framework for their quantumresources and user jobs to meet the ever-growing usage demands.This paper introduces a new multi-programming scheduling framework for quantum computing in a cloud environment.The framework addresses the issue of limited quantum computing resources in cloud environments and ensures a satisfactory user experience.It introduces three innovative designs:1)Our framework automatically allocates tasks to different quantum backends while ensuring fairness among users by considering both the cloud-based quantum resources and the user-submitted tasks.2)Multi-programming mechanism is employed across different quantum backends to enhance the overall throughput of the quantum cloud.In comparison to conventional task schedulers,our proposed framework achieves a throughput improvement of more than two-fold in the quantum cloud.3)The framework can balance fidelity and user waiting time by adaptively adjusting scheduling parameters. 展开更多
关键词 quantum computing SCHEDULING multi-programming qubit mapping
在线阅读 下载PDF
The Decoherence-Free in Multi-Coupled Quantum Computing System
13
作者 LIU Gui ping, BI Qiao,ZHANG Qing jie State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China 《Wuhan University Journal of Natural Sciences》 CAS 1999年第4期428-434,共7页
A subdynamics theory framework for describing multi coupled quantum computing systems is presented first. A general kinetic equation for the reduced system is given then, enabling a sufficient condition to be formula... A subdynamics theory framework for describing multi coupled quantum computing systems is presented first. A general kinetic equation for the reduced system is given then, enabling a sufficient condition to be formulated for constructing a pure coherent quantum computing system. This reveals that using multi coupled systems to perform quantum computing in Rigged Liouville Space opens the door to controlling or eliminating the intrinsic de coherence of quantum computing systems. 展开更多
关键词 quantum computing system SUBDYNAMICS rigged liouvile space density operator
在线阅读 下载PDF
Efficient Scheme for One-Way Quantum Computing with Radiofrequency SQUID Qubits by Adiabatic Passage
14
作者 宋明玉 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第11期837-844,共8页
We proposed an efficient scheme for constructing a quantum controlled phase-shift gate and generating thecluster states with rf superconducting quantum interference devices (SQUIDs)coupled to a microwave cavity throug... We proposed an efficient scheme for constructing a quantum controlled phase-shift gate and generating thecluster states with rf superconducting quantum interference devices (SQUIDs)coupled to a microwave cavity throughadiabatic evolution of dark eigenstates.During the operation,the spontaneous emission is suppressed since the rf SQUIDsare always in the three lowest flux states.Considering the influence from the cavity decay with achievable experimentalparameters,we numerically analyze the success probability and the fidelity for generating the two-SQUID maximallyentangled state and the controlled phase-shift gate by adiabatic passage. 展开更多
关键词 cluster states quantum computing adiabatic passage
在线阅读 下载PDF
Delayed-measurement one-way quantum computing on cloud quantum computer
15
作者 Zhi-Peng Yang Yu-Ran Zhang +1 位作者 Fu-Li Li Heng Fan 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期125-131,共7页
One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement ap... One-way quantum computation focuses on initially generating an entangled cluster state followed by a sequence of measurements with classical communication of their individual outcomes.Recently,a delayed-measurement approach has been applied to replace classical communication of individual measurement outcomes.In this work,by considering the delayed-measurement approach,we demonstrate a modified one-way CNOT gate using the on-cloud superconducting quantum computing platform:Quafu.The modified protocol for one-way quantum computing requires only three qubits rather than the four used in the standard protocol.Since this modified cluster state decreases the number of physical qubits required to implement one-way computation,both the scalability and complexity of the computing process are improved.Compared to previous work,this modified one-way CNOT gate is superior to the standard one in both fidelity and resource requirements.We have also numerically compared the behavior of standard and modified methods in large-scale one-way quantum computing.Our results suggest that in a noisy intermediate-scale quantum(NISQ)era,the modified method shows a significant advantage for one-way quantum computation. 展开更多
关键词 measurement-based quantum computing quantum entanglement quantum gates
原文传递
Automatic architecture design for distributed quantum computing
16
作者 Ting-Yu Luo Yu-Zhen Zheng +1 位作者 Xiang Fu Yu-Xin Deng 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期45-59,共15页
In distributed quantum computing(DQC),quantum hardware design mainly focuses on providing as many as possible high-quality inter-chip connections.Meanwhile,quantum software tries its best to reduce the required number... In distributed quantum computing(DQC),quantum hardware design mainly focuses on providing as many as possible high-quality inter-chip connections.Meanwhile,quantum software tries its best to reduce the required number of remote quantum gates between chips.However,this“hardware first,software follows”methodology may not fully exploit the potential of DQC.Inspired by classical software-hardware co-design,this paper explores the design space of application-specific DQC architectures.More specifically,we propose Auto Arch,an automated quantum chip network(QCN)structure design tool.With qubits grouping followed by a customized QCN design,AutoArch can generate a near-optimal DQC architecture suitable for target quantum algorithms.Experimental results show that the DQC architecture generated by Auto Arch can outperform other general QCN architectures when executing target quantum algorithms. 展开更多
关键词 distributed quantum computing quantum architecture quantum circuit partitioning
原文传递
Quantum Computing Based Neural Networks for Anomaly Classification in Real-Time Surveillance Videos
17
作者 MD.Yasar Arafath A.Niranjil Kumar 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2489-2508,共20页
For intelligent surveillance videos,anomaly detection is extremely important.Deep learning algorithms have been popular for evaluating realtime surveillance recordings,like traffic accidents,and criminal or unlawful i... For intelligent surveillance videos,anomaly detection is extremely important.Deep learning algorithms have been popular for evaluating realtime surveillance recordings,like traffic accidents,and criminal or unlawful incidents such as suicide attempts.Nevertheless,Deep learning methods for classification,like convolutional neural networks,necessitate a lot of computing power.Quantum computing is a branch of technology that solves abnormal and complex problems using quantum mechanics.As a result,the focus of this research is on developing a hybrid quantum computing model which is based on deep learning.This research develops a Quantum Computing-based Convolutional Neural Network(QC-CNN)to extract features and classify anomalies from surveillance footage.A Quantum-based Circuit,such as the real amplitude circuit,is utilized to improve the performance of the model.As far as my research,this is the first work to employ quantum deep learning techniques to classify anomalous events in video surveillance applications.There are 13 anomalies classified from the UCF-crime dataset.Based on experimental results,the proposed model is capable of efficiently classifying data concerning confusion matrix,Receiver Operating Characteristic(ROC),accuracy,Area Under Curve(AUC),precision,recall as well as F1-score.The proposed QC-CNN has attained the best accuracy of 95.65 percent which is 5.37%greater when compared to other existing models.To measure the efficiency of the proposed work,QC-CNN is also evaluated with classical and quantum models. 展开更多
关键词 Deep learning video surveillance quantum computing anomaly detection convolutional neural network
在线阅读 下载PDF
Performance-Oriented Layout Synthesis for Quantum Computing
18
作者 Chi-Chou Kao Hung-Yi Lin 《Computer Systems Science & Engineering》 2024年第6期1581-1594,共14页
Layout synthesis in quantum computing is crucial due to the physical constraints of quantum devices where quantum bits(qubits)can only interact effectively with their nearest neighbors.This constraint severely impacts... Layout synthesis in quantum computing is crucial due to the physical constraints of quantum devices where quantum bits(qubits)can only interact effectively with their nearest neighbors.This constraint severely impacts the design and efficiency of quantum algorithms,as arranging qubits optimally can significantly reduce circuit depth and improve computational performance.To tackle the layout synthesis challenge,we propose an algorithm based on integer linear programming(ILP).ILP is well-suited for this problem as it can formulate the optimization objective of minimizing circuit depth while adhering to the nearest neighbor interaction constraint.The algorithm aims to generate layouts that maximize qubit connectivity within the given physical constraints of the quantum device.For experimental validation,we outline a clear and feasible setup using real quantum devices.This includes specifying the type and configuration of the quantum hardware used,such as the number of qubits,connectivity constraints,and any technological limitations.The proposed algorithm is implemented on these devices to demonstrate its effectiveness in producing depth-optimal quantum circuit layouts.By integrating these elements,our research aims to provide practical solutions to enhance the efficiency and scalability of quantum computing systems,paving the way for advancements in quantum algorithm design and implementation. 展开更多
关键词 quantum computing layout placement and routing SCHEDULING ALLOCATION OPTIMALITY
在线阅读 下载PDF
Cavity-assisted quantum computing in a silicon nanostructure
19
作者 唐宝 秦豪 +2 位作者 张融 刘金明 薛鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第5期86-90,共5页
We present a scheme of quantum computing with charge qubits corresponding to one excess electron shared between dangling-bond pairs of surface silicon atoms that couple to a microwave stripline resonator on a chip. By... We present a scheme of quantum computing with charge qubits corresponding to one excess electron shared between dangling-bond pairs of surface silicon atoms that couple to a microwave stripline resonator on a chip. By choosing a certain evolution time, we propose the realization of a set of universal single-and two-qubit logical gates. Due to its intrinsic stability and scalability, the silicon dangling-bond charge qubit can be regarded as one of the most promising candidates for quantum computation. Compared to the previous schemes on quantum computing with silicon bulk systems, our scheme shows such advantages as a long coherent time and direct control and readout. 展开更多
关键词 quantum computing dangling-bond state
原文传递
Intelligent Robust Control of Redundant Smart Robotic Arm Pt II: Quantum Computing KB Optimizer Supremacy
20
作者 Alena V.Nikolaeva Sergey V.Ulyanov 《Artificial Intelligence Advances》 2020年第2期32-67,共36页
This article is a continuation of the work“Intelligent robust control of redundant smart robotic arm Pt I:Soft computing KB optimizer-deep machine learning IT”.In the first part of the paper,we examined control syst... This article is a continuation of the work“Intelligent robust control of redundant smart robotic arm Pt I:Soft computing KB optimizer-deep machine learning IT”.In the first part of the paper,we examined control systems with constant coefficients of the conventional PID controller(based on genetic algorithm)and intelligent control systems based on soft computing technologies.For demonstration,MatLab/Simulink models and a test benchmark of the robot manipulator demonstrated.Advantages and limitations of intelligent control systems based on soft computing technology discussed.Intelligent main element of the control system based on soft computing is a fuzzy controller with a knowledge base in it.In the first part of the article,two ways to implement fuzzy controllers showed.First way applyied one controller for all links of the manipulator and showed the best performance.However,such an implementation is not possible in complex control objects,such as a manipulator with seven degrees of freedom(7DOF).The second way use of separated control when an independent fuzzy controller controls each link.The control decomposition due to a slight decrease in the quality of management has greatly simplified the processes of creating and placing knowledge bases.In this Pt II,to eliminate the mismatch of the work of separate independent fuzzy controllers,methods for organizing coordination control based on quantum computing technologies to create robust intelligent control systems for robotic manipulators with 3DOF and 7DOF described.Quantum supremacy of developed end-to-end IT design of robust intelligent control systems demonstrated. 展开更多
关键词 quantum computing supremacy quantum-classical correlation Knowledge base Fuzzy controller quantum fuzzy inference
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部