We investigate the mixed-state entanglement between two spins embedded in the XXZ Heisenberg chain under thermal equilibrium.By deriving an analytical expression for the entanglement of two-spin thermal states and ext...We investigate the mixed-state entanglement between two spins embedded in the XXZ Heisenberg chain under thermal equilibrium.By deriving an analytical expression for the entanglement of two-spin thermal states and extending this analysis to larger spin chains,we demonstrate that mixed-state entanglement is profoundly shaped by both disorder and temperature.Our results reveal a sharp distinction between many-body localized and ergodic phases,with entanglement vanishing above diferent fnite temperature thresholds.Furthermore,by analyzing non-adjacent spins,we uncover an approximate exponential decay of entanglement with separation.This work advances the understanding of the quantum-to-classical transition by linking the entanglement properties of small subsystems to the broader thermal environment,ofering an explanation for the absence of entanglement in macroscopic systems.These fndings provide critical insights into quantum many-body physics,bridging concepts from thermalization,localization,and quantum information theory.展开更多
We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix. Based on the characteristics of the expressions, the quantum discord and the classical correlation are ea...We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix. Based on the characteristics of the expressions, the quantum discord and the classical correlation are easily obtained and compared under different initial conditions using a novel analytical method. We explain the relationships among quantum discord, classical correlation, and entanglement, and further find that the quantum discord is not always larger than the entanglement measured by concurrence in a general two-qubit X state. The new method, which is different from previous approaches, has certain guiding significance for analysing quantum discord and classical correlation of a two-qubit X state, such as a mixed state.展开更多
We investigate the quantum to classical transition induced by two-particle interaction via a system of periodically kicked particles.The classical dynamics of particle 1 is almost unaffected in condition that its mass...We investigate the quantum to classical transition induced by two-particle interaction via a system of periodically kicked particles.The classical dynamics of particle 1 is almost unaffected in condition that its mass is much larger than that of particle 2.Interestingly,such classically weak influence leads to the quantum to classical transition of the dynamical behavior of particle 1.Namely,the quantum diffusion of this particle undergoes the transition from dynamical localization to the classically chaotic diffusion with the decrease of the effective Planck constantħeff.The behind physics is due to the growth of entanglement in the system.The classically very weak interaction leads to the exponential decay of purity in condition that the classical dynamics of external degrees freedom is strongly chaotic.展开更多
We use linear entropy of an exact quantum state to study the entanglement between internal electronic states and external motional states for a two-level atom held in an amplitude-modulated and tilted optical lattice....We use linear entropy of an exact quantum state to study the entanglement between internal electronic states and external motional states for a two-level atom held in an amplitude-modulated and tilted optical lattice. Starting from an unentangled initial state associated with the regular 'island' of classical phase space, it is demonstrated that the quantum resonance leads to entanglement generation, the chaotic parameter region results in the increase of the generation speed, and the symmetries of the initial probability distribution determine the final degree of entanglement. The entangled initial states are associated with the classical 'chaotic sea', which do not affect the final entanglement degree for the same initial symmetry. The results may be useful in engineering quantum dynamics for quantum information processing.展开更多
Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop q...Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop quantum cosmology. Assuming that the dark energy has a constant bulk viscosity, it is found that the bulk viscosity effects influence only the quintessence model case leading to the existence of a viscous late time attractor solution of de- Sitter type, whereas the quantum geometry effects influence the phantom model case where the big rip singularity is removed. Moreover, our results of the Hubble parameter as a function of the redshift are in good agreement with the more recent data.展开更多
Review of the irreversibility problem in modern physics with new researches is given. Some characteristics of the Markov chains are specified and the important property of monotonicity of a probability is formulated. ...Review of the irreversibility problem in modern physics with new researches is given. Some characteristics of the Markov chains are specified and the important property of monotonicity of a probability is formulated. Using one thin inequality, the behavior of relative entropy in the classical case is considered. Further we pass to studying of the irreversibility phenomena in quantum problems. By new method is received the Lindblad’s equation and its physical essence is explained. Deep analogy between the classical Markov processes and development described by the Lindblad’s equation is conducted. Using method of comparison of the Lind-blad’s equation with the linear Langevin equation we receive a system of differential equations, which are more general, than the Caldeira-Leggett equation. Here we consider quantum systems without inverse influ-ence on a surrounding background with high temperature. Quantum diffusion of a single particle is consid-ered and possible ways of the permission of the Schr?dinger’s cat paradox and the role of an external world for the phenomena with quantum irreversibility are discussed. In spite of previous opinion we conclude that in the equilibrium environment is not necessary to postulate the processes with collapses of wave functions. Besides, we draw attention to the fact that the Heisenberg’s uncertainty relation does not always mean the restriction is usually the product of the average values of commuting variables. At last, some prospects in the problem of quantum irreversibility are discussed.展开更多
The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics...The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics of quantum coherence and quantum entanglement. It is shown that the atomic coherence can be improved or even maintained by the classical driving field, the non-Markovian effect, and the atom-reservoir detuning. The interconversion between the atomic coherence and the atom-reservoir entanglement exists and can be controlled by the appropriate conditions. The conservation of coherence for different partitions is explored, and the dynamics of a system with two-photon excitations is different from the case of single-photon excitation.展开更多
We investigate the cosmological model of viscous modified Chaplygin gas (VMCG) in classical and loop quantum cosmology (LQC). Firstly, we constrain its equation of state parameters in the framework of standard cos...We investigate the cosmological model of viscous modified Chaplygin gas (VMCG) in classical and loop quantum cosmology (LQC). Firstly, we constrain its equation of state parameters in the framework of standard cosmology from Union 2.1 SNe Ia data. Then, we probe the dynamical stability of this model in a universe filled with VMCG and baryonic fluid in LQC background. It is found that the model is very suitable with (χ2/d.o.f = 0.974) and gives a good prediction of the current values of the deceleration parameter q0 =∈ (-0.60, -0.57) and the effective state parameter ωeff∈ (-0.76, -0.74) that is consistent with the recent observational data. The model can also predict the time crossing when (ρDE ≈ Pmatter) at z = 0.75 and can solve the coincidence problem. In LQC background, the Big Bang singularity found in classical cosmology ceases to exist and is replaced by a bounce when the Hubble parameter vanishes at ρtot≈ρc.展开更多
In this paper, classical and continuous variable (CV) quantum neural network hybrid multi-classifiers are presented using the MNIST dataset. Currently available classifiers can classify only up to two classes. The pro...In this paper, classical and continuous variable (CV) quantum neural network hybrid multi-classifiers are presented using the MNIST dataset. Currently available classifiers can classify only up to two classes. The proposed architecture allows networks to classify classes up to n<sup>m</sup> classes, where n represents cutoff dimension and m the number of qumodes on photonic quantum computers. The combination of cutoff dimension and probability measurement method in the CV model allows a quantum circuit to produce output vectors of size n<sup>m</sup>. They are then interpreted as one-hot encoded labels, padded with n<sup>m</sup> - 10 zeros. The total of seven different classifiers is built using 2, 3, …, 6, and 8-qumodes on photonic quantum computing simulators, based on the binary classifier architecture proposed in “Continuous variable quantum neural networks” [1]. They are composed of a classical feed-forward neural network, a quantum data encoding circuit, and a CV quantum neural network circuit. On a truncated MNIST dataset of 600 samples, a 4-qumode hybrid classifier achieves 100% training accuracy.展开更多
According to the classical mechanics the energy of a celestial body circulating in the solar system is a constant term. This energy is defined by the masses product of the larger and smaller body entering into a mutua...According to the classical mechanics the energy of a celestial body circulating in the solar system is a constant term. This energy is defined by the masses product of the larger and smaller body entering into a mutual attraction as well as the size of the major semiaxis characteristic for the corresponding Kepler orbit. A special situation concerns the planet interaction with the Sun because of a systematic decrease of the Sun mass due to the luminosity effect. The aim of the paper is to point out that even in the case of perfectly constant interacting masses the energy of the moving body should decrease when a quantum treatment of the body motion is considered. The rate of the energy decrease is extremely small, nevertheless it gives a shortening of the distance between the interacting bodies leading to a final effect of a touch of the larger body and a smaller one.展开更多
We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantu...We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantum circuit, thereby propose a novel hybrid quantum deep neural network(HQDNN) used for image classification. After bilinear interpolation reduces the original image to a suitable size, an improved novel enhanced quantum representation(INEQR) is used to encode it into quantum states as the input of the HQDNN. Multi-layer parameterized quantum circuits are used as the main structure to implement feature extraction and classification. The output results of parameterized quantum circuits are converted into classical data through quantum measurements and then optimized on a classical computer. To verify the performance of the HQDNN, we conduct binary classification and three classification experiments on the MNIST(Modified National Institute of Standards and Technology) data set. In the first binary classification, the accuracy of 0 and 4 exceeds98%. Then we compare the performance of three classification with other algorithms, the results on two datasets show that the classification accuracy is higher than that of quantum deep neural network and general quantum convolutional neural network.展开更多
We investigate both the quantum and classical dynamics of a non-Hermitian system via a kicked rotor model with PT symmetry.For the quantum dynamics,both the mean momentum and mean square of momentum exhibit the stairc...We investigate both the quantum and classical dynamics of a non-Hermitian system via a kicked rotor model with PT symmetry.For the quantum dynamics,both the mean momentum and mean square of momentum exhibit the staircase growth with time when the system parameter is in the neighborhood of the PT symmetry breaking point.If the system parameter is much larger than the PT symmetry breaking point,the accelerator mode results in the directed spreading of the wavepackets as well as the ballistic diffusion in momentum space.For the classical dynamics,the non-Hermitian kicking potential leads to the exponentially-fast increase of classical complex trajectories.As a consequence,the imaginary part of the trajectories exponentially diffuses with time,while the real part exhibits the normal diffusion.Our analytical prediction of the exponential diffusion of imaginary momentum and its breakdown time is in good agreement with numerical results.The quantum signature of the chaotic diffusion of the complex trajectories is reflected by the dynamics of the out-of-timeorder correlators(OTOC).In the semiclassical regime,the rate of the exponential increase of the OTOC is equal to that of the exponential diffusion of the complex trajectories.展开更多
An equilibrium-based YinYang bipolar dynamic Generalization of CPT (G-CPT) symmetry is introduced based on energy/information conservational quantum emergence-submergence. As a bottleneck of quantum computing, quantum...An equilibrium-based YinYang bipolar dynamic Generalization of CPT (G-CPT) symmetry is introduced based on energy/information conservational quantum emergence-submergence. As a bottleneck of quantum computing, quantum decoherence or collapse has been plaguing quantum mechanics for decades. It is suggested that the crux of the problem can trace its origin back to the incompleteness of CPT symmetry due to the lack of holistic representation for equilibrium-based bipolar coexistence. In this work, the notion of quantum emergence-submergence is coined as two opposite processes with bipolar energy/information conservation. The new notion leads to G-CPT symmetry supported by a Bipolar Quantum Cellular Automata (BQCA) interpretation of quantum mechanics. It is shown that the new interpretation further leads to the unification of electromagnetic particle-antiparticle bipolarity and gravitational action-reaction bipolarity as well as CPT symmetry and CP violation into a philosophically, geometrically and logically different quantum gravity theory. On one hand, G-CPT symmetry enables a Bipolar Quantum Agent (BQA) to emerge as a bipolar quantum superposition or entanglement coupled to a globally coherent BQCA;on the other hand, G-CP violation supports a causal theory of BQA submergence or decoupling from the global coherence. In turn, BQAs can submerge from one world but emerge in another within YinYang bipolar quantum geometry. It is suggested that all logical, physical, social, biological and mental worlds are bipolar quantum entangled under G-CPT symmetry. It is contended that G-CPT symmetry constitutes an analytical paradigm of quantum mechanics and quantum gravity—a fundamental departure from “what goes around comes around”. The new paradigm leads to a number of predictions and challenges.展开更多
We present a general formalism for setting up unitary transform operators from classical transforms via the technique of integration within an ordered product of operators, their normally ordered form can be obtained ...We present a general formalism for setting up unitary transform operators from classical transforms via the technique of integration within an ordered product of operators, their normally ordered form can be obtained too.展开更多
Although quantum Bayesian networks provide a promising paradigm for multi-agent decision-making,their practical application faces two challenges in the noisy intermediate-scale quantum(NISQ)era.Limited qubit resources...Although quantum Bayesian networks provide a promising paradigm for multi-agent decision-making,their practical application faces two challenges in the noisy intermediate-scale quantum(NISQ)era.Limited qubit resources restrict direct application to large-scale inference tasks.Additionally,no quantum methods are currently available for multi-agent collaborative decision-making.To address these,we propose a hybrid quantum–classical multi-agent decision-making framework based on hierarchical Bayesian networks,comprising two novel methods.The first one is a hybrid quantum–classical inference method based on hierarchical Bayesian networks.It decomposes large-scale hierarchical Bayesian networks into modular subnetworks.The inference for each subnetwork can be performed on NISQ devices,and the intermediate results are converted into classical messages for cross-layer transmission.The second one is a multi-agent decision-making method using the variational quantum eigensolver(VQE)in the influence diagram.This method models the collaborative decision-making with the influence diagram and encodes the expected utility of diverse actions into a Hamiltonian and subsequently determines the intra-group optimal action efficiently.Experimental validation on the IonQ quantum simulator demonstrates that the hierarchical method outperforms the non-hierarchical method at the functional inference level,and the VQE method can obtain the optimal strategy exactly at the collaborative decision-making level.Our research not only extends the application of quantum computing to multi-agent decision-making but also provides a practical solution for the NISQ era.展开更多
As one of the famous effects in the quantum Rabi model(QRM),Rabi oscillation may lead to the occurrence of quantum dynamical behaviors without classical dynamic counterparts,such as quantum collapse and revival effect...As one of the famous effects in the quantum Rabi model(QRM),Rabi oscillation may lead to the occurrence of quantum dynamical behaviors without classical dynamic counterparts,such as quantum collapse and revival effects.In this paper,we focus on studying the long-time quantum signatures of chaos in the large atom-light frequency ratios of the Rabi model.It is shown that the saturated values of the entanglement entropy for initial states located in chaotic sea are higher than that in the regular regions,and the Husimi Q function are more dispersed in phase space.Moreover,we observed that the long-time average entanglement entropy and spin variance correspond well with the semiclassical phase space.Our results imply that the correspondence principle is not invalidated by quantum collapse and revival effects in the large atom-light frequency ratios Rabi model.展开更多
Recent advances in quantum dots (QDs) for classical and non-classical light sources are presented. We have established metal organic chemical vapor deposition (MOCVD) technology for InAs-based QD lasers at 1.3 μm...Recent advances in quantum dots (QDs) for classical and non-classical light sources are presented. We have established metal organic chemical vapor deposition (MOCVD) technology for InAs-based QD lasers at 1.3 μm and achieved ultralow threshold in QD lasers with photonic crystal (PhC) nanocavity. In addition, single photon emitters at 1.55 μm, GaN-based single photon sources operating at 200 K, and high-Q PhC nanocavity have been demonstrated.展开更多
This paper proposes an efficient framework to utilize quantum search practically.To the best of our knowledge,this is the first paper to show a concrete usage of quantum search in general programming.In our framework,...This paper proposes an efficient framework to utilize quantum search practically.To the best of our knowledge,this is the first paper to show a concrete usage of quantum search in general programming.In our framework,we can utilize a quantum computer as a coprocessor to speed-up some parts of a program that runs on a classical computer.To do so,we propose several new ideas and techniques,such as a practical method to design a large quantum circuits for search problems and an efficient quantum comparator.展开更多
We applied quantum mechanics/classical mechanics simulations to study excess-electron attachment and ionization of uridine monophosphate anion(d UMP-)in explicit aqueous solutions.We calculated vertical electron affin...We applied quantum mechanics/classical mechanics simulations to study excess-electron attachment and ionization of uridine monophosphate anion(d UMP-)in explicit aqueous solutions.We calculated vertical electron affinities(VEAs),adiabatic electron affinities(AEAs),vertical detachment energies(VDEs),vertical ionization energies(VIEs),and adiabatic ionization energies(AIEs)of the 40 structures obtained from molecular dynamic trajectory.The excess-electron and hole distributions were analyzed in electron attachment and ionization of aqueous d UMP^(-).The converged mean VEA(-0.31 e V)and AEA(2.13 e V)suggest that excess-electron can easily attach to d UMP^(-).The mean vertical(-0.50 e)and adiabatic(-0.62 e)excess-electron on uracil reveal that main excesselectrons are localized on nucleobases at the most snapshots.The distributions at several special snapshots demonstrate the excess-electron delocalization over nucleobases/ribose or ribose/phosphate group after the structural relaxations of d UMP^(2-)dianion.The VDE value(2.78 e V)indicates that d UMP2-dianion could be very stable.Moreover,the mean VIE is 8.13 eV which is in agreement with the previous calculation using solvation model.The hole distributions on uracil suggest that the nucleobases are easily ionized after the irradiation of high-energy rays.In vertical ionizations,the holes would be delocalized over uracil and ribose at several snapshots.Observing the adiabatic hole distributions,it can be found that electrons on phosphate group and holes on nucleobases can be transferred to ribose at the special snapshots in the structural relaxation of neutral species.展开更多
The improvement on the calculation of anti-Stokes energy transfer rate is studied in the present work. The additional proportion coefficient between Stokes and anti-Stokes light intensities of quantum Raman scattering...The improvement on the calculation of anti-Stokes energy transfer rate is studied in the present work. The additional proportion coefficient between Stokes and anti-Stokes light intensities of quantum Raman scattering theory as compared with the classical Raman theory is introduced to successfully describe the anti-Stokes energy transfer. The theoretical formula for the improvement on the calculation of anti-Stokes energy transfer rate is derived for the first time in this study. The correctness of introducing coefficient exp{△E/kT} from well-known Raman scatter theory is demonstrated also. Moreover, the experimental lifetime measurement in Er0.01YbxY1-0.01-xVO4 crystal is performed to justify the validity of our important improvement in the original phonon-assisted energy transfer theory for the first time.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.92365202,12475011,and 11921005)the National Key R&D Program of China(Grant No.2024YFA1409002)Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)。
文摘We investigate the mixed-state entanglement between two spins embedded in the XXZ Heisenberg chain under thermal equilibrium.By deriving an analytical expression for the entanglement of two-spin thermal states and extending this analysis to larger spin chains,we demonstrate that mixed-state entanglement is profoundly shaped by both disorder and temperature.Our results reveal a sharp distinction between many-body localized and ergodic phases,with entanglement vanishing above diferent fnite temperature thresholds.Furthermore,by analyzing non-adjacent spins,we uncover an approximate exponential decay of entanglement with separation.This work advances the understanding of the quantum-to-classical transition by linking the entanglement properties of small subsystems to the broader thermal environment,ofering an explanation for the absence of entanglement in macroscopic systems.These fndings provide critical insights into quantum many-body physics,bridging concepts from thermalization,localization,and quantum information theory.
基金supported by the Natural Science Foundation of Hunan Province of China (Grant No. 09JJ6011)the Natural Science Foundation of Education Department of Hunan Province, China (Grant Nos. 08A055 and 07C528)
文摘We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix. Based on the characteristics of the expressions, the quantum discord and the classical correlation are easily obtained and compared under different initial conditions using a novel analytical method. We explain the relationships among quantum discord, classical correlation, and entanglement, and further find that the quantum discord is not always larger than the entanglement measured by concurrence in a general two-qubit X state. The new method, which is different from previous approaches, has certain guiding significance for analysing quantum discord and classical correlation of a two-qubit X state, such as a mixed state.
基金the National Natural Science Foundation of China(Grant Nos.11864014 and 11804130).
文摘We investigate the quantum to classical transition induced by two-particle interaction via a system of periodically kicked particles.The classical dynamics of particle 1 is almost unaffected in condition that its mass is much larger than that of particle 2.Interestingly,such classically weak influence leads to the quantum to classical transition of the dynamical behavior of particle 1.Namely,the quantum diffusion of this particle undergoes the transition from dynamical localization to the classically chaotic diffusion with the decrease of the effective Planck constantħeff.The behind physics is due to the growth of entanglement in the system.The classically very weak interaction leads to the exponential decay of purity in condition that the classical dynamics of external degrees freedom is strongly chaotic.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11175064 and 11475060the Construct Program of the National Key Discipline of Chinathe Hunan Provincial Innovation Foundation for Postgraduates under Grant No CX2014B195
文摘We use linear entropy of an exact quantum state to study the entanglement between internal electronic states and external motional states for a two-level atom held in an amplitude-modulated and tilted optical lattice. Starting from an unentangled initial state associated with the regular 'island' of classical phase space, it is demonstrated that the quantum resonance leads to entanglement generation, the chaotic parameter region results in the increase of the generation speed, and the symmetries of the initial probability distribution determine the final degree of entanglement. The entangled initial states are associated with the classical 'chaotic sea', which do not affect the final entanglement degree for the same initial symmetry. The results may be useful in engineering quantum dynamics for quantum information processing.
基金Supported by the Algerian Ministry of Education and ResearchDGRSDT
文摘Dynamical behaviors and stability properties of a flat space Friedmann-Robertson-Walker universe filled with pressureless dark matter and viscous dark energy are studied in the context of standard classical and loop quantum cosmology. Assuming that the dark energy has a constant bulk viscosity, it is found that the bulk viscosity effects influence only the quintessence model case leading to the existence of a viscous late time attractor solution of de- Sitter type, whereas the quantum geometry effects influence the phantom model case where the big rip singularity is removed. Moreover, our results of the Hubble parameter as a function of the redshift are in good agreement with the more recent data.
文摘Review of the irreversibility problem in modern physics with new researches is given. Some characteristics of the Markov chains are specified and the important property of monotonicity of a probability is formulated. Using one thin inequality, the behavior of relative entropy in the classical case is considered. Further we pass to studying of the irreversibility phenomena in quantum problems. By new method is received the Lindblad’s equation and its physical essence is explained. Deep analogy between the classical Markov processes and development described by the Lindblad’s equation is conducted. Using method of comparison of the Lind-blad’s equation with the linear Langevin equation we receive a system of differential equations, which are more general, than the Caldeira-Leggett equation. Here we consider quantum systems without inverse influ-ence on a surrounding background with high temperature. Quantum diffusion of a single particle is consid-ered and possible ways of the permission of the Schr?dinger’s cat paradox and the role of an external world for the phenomena with quantum irreversibility are discussed. In spite of previous opinion we conclude that in the equilibrium environment is not necessary to postulate the processes with collapses of wave functions. Besides, we draw attention to the fact that the Heisenberg’s uncertainty relation does not always mean the restriction is usually the product of the average values of commuting variables. At last, some prospects in the problem of quantum irreversibility are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61675115,11204156,11574178,11304179,and 11647172)the Science and Technology Plan Projects of Shandong University,China(Grant No.J16LJ52)
文摘The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics of quantum coherence and quantum entanglement. It is shown that the atomic coherence can be improved or even maintained by the classical driving field, the non-Markovian effect, and the atom-reservoir detuning. The interconversion between the atomic coherence and the atom-reservoir entanglement exists and can be controlled by the appropriate conditions. The conservation of coherence for different partitions is explored, and the dynamics of a system with two-photon excitations is different from the case of single-photon excitation.
基金Supported by the Algerian Ministry of Education and Research and DGRSDT
文摘We investigate the cosmological model of viscous modified Chaplygin gas (VMCG) in classical and loop quantum cosmology (LQC). Firstly, we constrain its equation of state parameters in the framework of standard cosmology from Union 2.1 SNe Ia data. Then, we probe the dynamical stability of this model in a universe filled with VMCG and baryonic fluid in LQC background. It is found that the model is very suitable with (χ2/d.o.f = 0.974) and gives a good prediction of the current values of the deceleration parameter q0 =∈ (-0.60, -0.57) and the effective state parameter ωeff∈ (-0.76, -0.74) that is consistent with the recent observational data. The model can also predict the time crossing when (ρDE ≈ Pmatter) at z = 0.75 and can solve the coincidence problem. In LQC background, the Big Bang singularity found in classical cosmology ceases to exist and is replaced by a bounce when the Hubble parameter vanishes at ρtot≈ρc.
文摘In this paper, classical and continuous variable (CV) quantum neural network hybrid multi-classifiers are presented using the MNIST dataset. Currently available classifiers can classify only up to two classes. The proposed architecture allows networks to classify classes up to n<sup>m</sup> classes, where n represents cutoff dimension and m the number of qumodes on photonic quantum computers. The combination of cutoff dimension and probability measurement method in the CV model allows a quantum circuit to produce output vectors of size n<sup>m</sup>. They are then interpreted as one-hot encoded labels, padded with n<sup>m</sup> - 10 zeros. The total of seven different classifiers is built using 2, 3, …, 6, and 8-qumodes on photonic quantum computing simulators, based on the binary classifier architecture proposed in “Continuous variable quantum neural networks” [1]. They are composed of a classical feed-forward neural network, a quantum data encoding circuit, and a CV quantum neural network circuit. On a truncated MNIST dataset of 600 samples, a 4-qumode hybrid classifier achieves 100% training accuracy.
文摘According to the classical mechanics the energy of a celestial body circulating in the solar system is a constant term. This energy is defined by the masses product of the larger and smaller body entering into a mutual attraction as well as the size of the major semiaxis characteristic for the corresponding Kepler orbit. A special situation concerns the planet interaction with the Sun because of a systematic decrease of the Sun mass due to the luminosity effect. The aim of the paper is to point out that even in the case of perfectly constant interacting masses the energy of the moving body should decrease when a quantum treatment of the body motion is considered. The rate of the energy decrease is extremely small, nevertheless it gives a shortening of the distance between the interacting bodies leading to a final effect of a touch of the larger body and a smaller one.
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No. ZR2021MF049)the Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos. ZR2022LLZ012 and ZR2021LLZ001)。
文摘We redesign the parameterized quantum circuit in the quantum deep neural network, construct a three-layer structure as the hidden layer, and then use classical optimization algorithms to train the parameterized quantum circuit, thereby propose a novel hybrid quantum deep neural network(HQDNN) used for image classification. After bilinear interpolation reduces the original image to a suitable size, an improved novel enhanced quantum representation(INEQR) is used to encode it into quantum states as the input of the HQDNN. Multi-layer parameterized quantum circuits are used as the main structure to implement feature extraction and classification. The output results of parameterized quantum circuits are converted into classical data through quantum measurements and then optimized on a classical computer. To verify the performance of the HQDNN, we conduct binary classification and three classification experiments on the MNIST(Modified National Institute of Standards and Technology) data set. In the first binary classification, the accuracy of 0 and 4 exceeds98%. Then we compare the performance of three classification with other algorithms, the results on two datasets show that the classification accuracy is higher than that of quantum deep neural network and general quantum convolutional neural network.
基金Project partially supported by the National Natural Science Foundation of China(Grant Nos.12065009,11804130,and 11805165)Zhejiang Provincial Nature Science Foundation,China(Grant No.LY20A050001)。
文摘We investigate both the quantum and classical dynamics of a non-Hermitian system via a kicked rotor model with PT symmetry.For the quantum dynamics,both the mean momentum and mean square of momentum exhibit the staircase growth with time when the system parameter is in the neighborhood of the PT symmetry breaking point.If the system parameter is much larger than the PT symmetry breaking point,the accelerator mode results in the directed spreading of the wavepackets as well as the ballistic diffusion in momentum space.For the classical dynamics,the non-Hermitian kicking potential leads to the exponentially-fast increase of classical complex trajectories.As a consequence,the imaginary part of the trajectories exponentially diffuses with time,while the real part exhibits the normal diffusion.Our analytical prediction of the exponential diffusion of imaginary momentum and its breakdown time is in good agreement with numerical results.The quantum signature of the chaotic diffusion of the complex trajectories is reflected by the dynamics of the out-of-timeorder correlators(OTOC).In the semiclassical regime,the rate of the exponential increase of the OTOC is equal to that of the exponential diffusion of the complex trajectories.
文摘An equilibrium-based YinYang bipolar dynamic Generalization of CPT (G-CPT) symmetry is introduced based on energy/information conservational quantum emergence-submergence. As a bottleneck of quantum computing, quantum decoherence or collapse has been plaguing quantum mechanics for decades. It is suggested that the crux of the problem can trace its origin back to the incompleteness of CPT symmetry due to the lack of holistic representation for equilibrium-based bipolar coexistence. In this work, the notion of quantum emergence-submergence is coined as two opposite processes with bipolar energy/information conservation. The new notion leads to G-CPT symmetry supported by a Bipolar Quantum Cellular Automata (BQCA) interpretation of quantum mechanics. It is shown that the new interpretation further leads to the unification of electromagnetic particle-antiparticle bipolarity and gravitational action-reaction bipolarity as well as CPT symmetry and CP violation into a philosophically, geometrically and logically different quantum gravity theory. On one hand, G-CPT symmetry enables a Bipolar Quantum Agent (BQA) to emerge as a bipolar quantum superposition or entanglement coupled to a globally coherent BQCA;on the other hand, G-CP violation supports a causal theory of BQA submergence or decoupling from the global coherence. In turn, BQAs can submerge from one world but emerge in another within YinYang bipolar quantum geometry. It is suggested that all logical, physical, social, biological and mental worlds are bipolar quantum entangled under G-CPT symmetry. It is contended that G-CPT symmetry constitutes an analytical paradigm of quantum mechanics and quantum gravity—a fundamental departure from “what goes around comes around”. The new paradigm leads to a number of predictions and challenges.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475056
文摘We present a general formalism for setting up unitary transform operators from classical transforms via the technique of integration within an ordered product of operators, their normally ordered form can be obtained too.
基金supported by the National Natural Science Foundation of China(Grant Nos.62473371 and 61673389)。
文摘Although quantum Bayesian networks provide a promising paradigm for multi-agent decision-making,their practical application faces two challenges in the noisy intermediate-scale quantum(NISQ)era.Limited qubit resources restrict direct application to large-scale inference tasks.Additionally,no quantum methods are currently available for multi-agent collaborative decision-making.To address these,we propose a hybrid quantum–classical multi-agent decision-making framework based on hierarchical Bayesian networks,comprising two novel methods.The first one is a hybrid quantum–classical inference method based on hierarchical Bayesian networks.It decomposes large-scale hierarchical Bayesian networks into modular subnetworks.The inference for each subnetwork can be performed on NISQ devices,and the intermediate results are converted into classical messages for cross-layer transmission.The second one is a multi-agent decision-making method using the variational quantum eigensolver(VQE)in the influence diagram.This method models the collaborative decision-making with the influence diagram and encodes the expected utility of diverse actions into a Hamiltonian and subsequently determines the intra-group optimal action efficiently.Experimental validation on the IonQ quantum simulator demonstrates that the hierarchical method outperforms the non-hierarchical method at the functional inference level,and the VQE method can obtain the optimal strategy exactly at the collaborative decision-making level.Our research not only extends the application of quantum computing to multi-agent decision-making but also provides a practical solution for the NISQ era.
基金supported by the National Natural Science Foundation of China under Grant Nos.12275078,11875026,12035005 and 2020YFC2201400Science Foundation of Hengyang Normal University of China under Contract No.2020QD24sponsored by the innovative research group of Hunan Province under Grant No.2024JJ1006。
文摘As one of the famous effects in the quantum Rabi model(QRM),Rabi oscillation may lead to the occurrence of quantum dynamical behaviors without classical dynamic counterparts,such as quantum collapse and revival effects.In this paper,we focus on studying the long-time quantum signatures of chaos in the large atom-light frequency ratios of the Rabi model.It is shown that the saturated values of the entanglement entropy for initial states located in chaotic sea are higher than that in the regular regions,and the Husimi Q function are more dispersed in phase space.Moreover,we observed that the long-time average entanglement entropy and spin variance correspond well with the semiclassical phase space.Our results imply that the correspondence principle is not invalidated by quantum collapse and revival effects in the large atom-light frequency ratios Rabi model.
基金Special Coordination Funds for Promoting Science and Technology
文摘Recent advances in quantum dots (QDs) for classical and non-classical light sources are presented. We have established metal organic chemical vapor deposition (MOCVD) technology for InAs-based QD lasers at 1.3 μm and achieved ultralow threshold in QD lasers with photonic crystal (PhC) nanocavity. In addition, single photon emitters at 1.55 μm, GaN-based single photon sources operating at 200 K, and high-Q PhC nanocavity have been demonstrated.
文摘This paper proposes an efficient framework to utilize quantum search practically.To the best of our knowledge,this is the first paper to show a concrete usage of quantum search in general programming.In our framework,we can utilize a quantum computer as a coprocessor to speed-up some parts of a program that runs on a classical computer.To do so,we propose several new ideas and techniques,such as a practical method to design a large quantum circuits for search problems and an efficient quantum comparator.
基金supported by the National Natural Science Foundation of China(No.22173014,No.21773226,and No.21873100)Open Fund of the State Key Laboratory of Molecular Reaction Dynamics in Dalian Institute of Chemical Physics,Chinese Academy of Sciences。
文摘We applied quantum mechanics/classical mechanics simulations to study excess-electron attachment and ionization of uridine monophosphate anion(d UMP-)in explicit aqueous solutions.We calculated vertical electron affinities(VEAs),adiabatic electron affinities(AEAs),vertical detachment energies(VDEs),vertical ionization energies(VIEs),and adiabatic ionization energies(AIEs)of the 40 structures obtained from molecular dynamic trajectory.The excess-electron and hole distributions were analyzed in electron attachment and ionization of aqueous d UMP^(-).The converged mean VEA(-0.31 e V)and AEA(2.13 e V)suggest that excess-electron can easily attach to d UMP^(-).The mean vertical(-0.50 e)and adiabatic(-0.62 e)excess-electron on uracil reveal that main excesselectrons are localized on nucleobases at the most snapshots.The distributions at several special snapshots demonstrate the excess-electron delocalization over nucleobases/ribose or ribose/phosphate group after the structural relaxations of d UMP^(2-)dianion.The VDE value(2.78 e V)indicates that d UMP2-dianion could be very stable.Moreover,the mean VIE is 8.13 eV which is in agreement with the previous calculation using solvation model.The hole distributions on uracil suggest that the nucleobases are easily ionized after the irradiation of high-energy rays.In vertical ionizations,the holes would be delocalized over uracil and ribose at several snapshots.Observing the adiabatic hole distributions,it can be found that electrons on phosphate group and holes on nucleobases can be transferred to ribose at the special snapshots in the structural relaxation of neutral species.
基金supported by the National Natural Science Foundation of China (Grant No.10674019)
文摘The improvement on the calculation of anti-Stokes energy transfer rate is studied in the present work. The additional proportion coefficient between Stokes and anti-Stokes light intensities of quantum Raman scattering theory as compared with the classical Raman theory is introduced to successfully describe the anti-Stokes energy transfer. The theoretical formula for the improvement on the calculation of anti-Stokes energy transfer rate is derived for the first time in this study. The correctness of introducing coefficient exp{△E/kT} from well-known Raman scatter theory is demonstrated also. Moreover, the experimental lifetime measurement in Er0.01YbxY1-0.01-xVO4 crystal is performed to justify the validity of our important improvement in the original phonon-assisted energy transfer theory for the first time.