In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec...In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.展开更多
This is a review of quantum methods for machine learning problems that consists of two parts.The first part,"quantum tools",presented some of the fundamentals and introduced several quantum tools based on kn...This is a review of quantum methods for machine learning problems that consists of two parts.The first part,"quantum tools",presented some of the fundamentals and introduced several quantum tools based on known quantum search algorithms.This second part of the review presents several classification problems in machine learning that can be accelerated with quantum subroutines.We have chosen supervised learning tasks as typical classification problems to illustrate the use of quantum methods for classification.展开更多
In this article,a new optimization system that uses few features to recognize locomotion with high classification accuracy is proposed.The optimization system consists of three parts.First,the features of the mixed me...In this article,a new optimization system that uses few features to recognize locomotion with high classification accuracy is proposed.The optimization system consists of three parts.First,the features of the mixed mechanical signal data are extracted from each analysis window of 200 ms after each foot contact event.Then,the Binary version of the hybrid Gray Wolf Optimization and Particle Swarm Optimization(BGWOPSO)algorithm is used to select features.And,the selected features are optimized and assigned different weights by the Biogeography-Based Optimization(BBO)algorithm.Finally,an improved K-Nearest Neighbor(KNN)classifier is employed for intention recognition.This classifier has the advantages of high accuracy,few parameters as well as low memory burden.Based on data from eight patients with transfemoral amputations,the optimization system is evaluated.The numerical results indicate that the proposed model can recognize nine daily locomotion modes(i.e.,low-,mid-,and fast-speed level-ground walking,ramp ascent/decent,stair ascent/descent,and sit/stand)by only seven features,with an accuracy of 96.66%±0.68%.As for real-time prediction on a powered knee prosthesis,the shortest prediction time is only 9.8 ms.These promising results reveal the potential of intention recognition based on the proposed system for high-level control of the prosthetic knee.展开更多
The potential to save energy in existing consumer electrical appliances is very high. One of the ways to achieve energy saving and improve energy use awareness is to recognize the energy consumption of individual elec...The potential to save energy in existing consumer electrical appliances is very high. One of the ways to achieve energy saving and improve energy use awareness is to recognize the energy consumption of individual electrical appliances. To recognize the energy consumption of consumer electrical appliances, the load disaggregation methodology is utilized. Non-intrusive appliance load monitoring (NIALM) is a load disaggrega-tion methodology that disaggregates the sum of power consumption in a single point into the power consumption of individual electrical appliances. In this study, load disaggregation is performed through voltage and current waveform, known as the V-I trajectory. The classification algorithm performs cropping and image pyramid reduction of the V-I trajectory plot template images before utilizing the principal component analysis (PCA) and the k-nearest neighbor (k-NN) algorithm. The novelty of this paper is to establish a systematic approach of load disaggregation through V-I trajectory-based load signature images by utilizing a multi-stage classification algorithm methodol-ogy. The contribution of this paper is in utilizing the “k- value,” the number of closest data points to the nearest neighbor, in the k-NN algorithm to be effective in classification of electrical appliances. The results of the multi-stage classification algorithm implementation have been discussed and the idea on future work has also been proposed.展开更多
Vehicle type recognition(VTR)is an important research topic due to its significance in intelligent transportation systems.However,recognizing vehicle type on the real-world images is challenging due to the illuminatio...Vehicle type recognition(VTR)is an important research topic due to its significance in intelligent transportation systems.However,recognizing vehicle type on the real-world images is challenging due to the illumination change,partial occlusion under real traffic environment.These difficulties limit the performance of current state-of-art methods,which are typically based on single-stage classification without considering feature availability.To address such difficulties,this paper proposes a two-stage vehicle type recognition method combining the most effective Gabor features.The first stage leverages edge features to classify vehicles by size into big or small via a similarity k-nearest neighbor classifier(SKNNC).Further the more specific vehicle type such as bus,truck,sedan or van is recognized by the second stage classification,which leverages the most effective Gabor features extracted by a set of Gabor wavelet kernels on the partitioned key patches via a kernel sparse representation-based classifier(KSRC).A verification and correction step based on minimum residual analysis is proposed to enhance the reliability of the VTR.To improve VTR efficiency,the most effective Gabor features are selected through gray relational analysis that leverages the correlation between Gabor feature image and the original image.Experimental results demonstrate that the proposed method not only improves the accuracy of VTR but also enhances the recognition robustness to illumination change and partial occlusion.展开更多
基金the Deputyship for Research and Innovation,“Ministry of Education”in Saudi Arabia for funding this research(IFKSUOR3-014-3).
文摘In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment.
基金supported in part by the Russian Science Foundation(No.19-19-00656)the Natural Science Foundation of Guangdong Province,China(No.2019A1515011721).
文摘This is a review of quantum methods for machine learning problems that consists of two parts.The first part,"quantum tools",presented some of the fundamentals and introduced several quantum tools based on known quantum search algorithms.This second part of the review presents several classification problems in machine learning that can be accelerated with quantum subroutines.We have chosen supervised learning tasks as typical classification problems to illustrate the use of quantum methods for classification.
基金This research was supported in part by the National Key Research and Development Program of China under Grant 2018YFC2001300in part by the National Natural Science Foundation of China under Grant 91948302,Grant 91848204,and Grant 52021003the Project of Scientific and Technological Development Plan of Jilin Province under Grant 20220508130RC.
文摘In this article,a new optimization system that uses few features to recognize locomotion with high classification accuracy is proposed.The optimization system consists of three parts.First,the features of the mixed mechanical signal data are extracted from each analysis window of 200 ms after each foot contact event.Then,the Binary version of the hybrid Gray Wolf Optimization and Particle Swarm Optimization(BGWOPSO)algorithm is used to select features.And,the selected features are optimized and assigned different weights by the Biogeography-Based Optimization(BBO)algorithm.Finally,an improved K-Nearest Neighbor(KNN)classifier is employed for intention recognition.This classifier has the advantages of high accuracy,few parameters as well as low memory burden.Based on data from eight patients with transfemoral amputations,the optimization system is evaluated.The numerical results indicate that the proposed model can recognize nine daily locomotion modes(i.e.,low-,mid-,and fast-speed level-ground walking,ramp ascent/decent,stair ascent/descent,and sit/stand)by only seven features,with an accuracy of 96.66%±0.68%.As for real-time prediction on a powered knee prosthesis,the shortest prediction time is only 9.8 ms.These promising results reveal the potential of intention recognition based on the proposed system for high-level control of the prosthetic knee.
文摘The potential to save energy in existing consumer electrical appliances is very high. One of the ways to achieve energy saving and improve energy use awareness is to recognize the energy consumption of individual electrical appliances. To recognize the energy consumption of consumer electrical appliances, the load disaggregation methodology is utilized. Non-intrusive appliance load monitoring (NIALM) is a load disaggrega-tion methodology that disaggregates the sum of power consumption in a single point into the power consumption of individual electrical appliances. In this study, load disaggregation is performed through voltage and current waveform, known as the V-I trajectory. The classification algorithm performs cropping and image pyramid reduction of the V-I trajectory plot template images before utilizing the principal component analysis (PCA) and the k-nearest neighbor (k-NN) algorithm. The novelty of this paper is to establish a systematic approach of load disaggregation through V-I trajectory-based load signature images by utilizing a multi-stage classification algorithm methodol-ogy. The contribution of this paper is in utilizing the “k- value,” the number of closest data points to the nearest neighbor, in the k-NN algorithm to be effective in classification of electrical appliances. The results of the multi-stage classification algorithm implementation have been discussed and the idea on future work has also been proposed.
基金supported in part by the National Natural Science Foundation of China(Nos.61304205 and 61502240)the Natural Science Foundation of Jiangsu Province(BK20191401)the Innovation and Entrepreneurship Training Project of College Students(202010300290,202010300211,202010300116E).
文摘Vehicle type recognition(VTR)is an important research topic due to its significance in intelligent transportation systems.However,recognizing vehicle type on the real-world images is challenging due to the illumination change,partial occlusion under real traffic environment.These difficulties limit the performance of current state-of-art methods,which are typically based on single-stage classification without considering feature availability.To address such difficulties,this paper proposes a two-stage vehicle type recognition method combining the most effective Gabor features.The first stage leverages edge features to classify vehicles by size into big or small via a similarity k-nearest neighbor classifier(SKNNC).Further the more specific vehicle type such as bus,truck,sedan or van is recognized by the second stage classification,which leverages the most effective Gabor features extracted by a set of Gabor wavelet kernels on the partitioned key patches via a kernel sparse representation-based classifier(KSRC).A verification and correction step based on minimum residual analysis is proposed to enhance the reliability of the VTR.To improve VTR efficiency,the most effective Gabor features are selected through gray relational analysis that leverages the correlation between Gabor feature image and the original image.Experimental results demonstrate that the proposed method not only improves the accuracy of VTR but also enhances the recognition robustness to illumination change and partial occlusion.