It is well known that the representations over an arbitrary configuration space related to a physical system of the Heisenberg algebra allow to distinguish the simply and non simply-connected manifolds [arXiv:quant-ph...It is well known that the representations over an arbitrary configuration space related to a physical system of the Heisenberg algebra allow to distinguish the simply and non simply-connected manifolds [arXiv:quant-ph/9908.014, arXiv:hep-th/0608.023]. In the light of this classification, the dynamics of a quantum particle on the line is studied in the framework of the conventional quantization scheme as well as that of the enhanced quantization recently introduced by J. R. Klauder [arXiv:quant-ph/1204.2870]. The quantum action functional restricted to the phase space coherent states is obtained from the enhanced quantization procedure, showing the coexistence of classical and quantum theories, a fundamental advantage offered by this new approach. The example of the one dimensional harmonic oscillator is given. Next, the spectrum of a free particle on the two-sphere is recognized from the covariant diffeomorphic representations of the momentum operator in the configuration space. Our results based on simple models also point out the already-known link between interaction and topology at quantum level.展开更多
In this paper, the extended affine Lie algebra sl2(Cq) is quantized from three different points of view, which produces three non-commutative and non-cocommutative Hopf algebra structures, and yields other three qua...In this paper, the extended affine Lie algebra sl2(Cq) is quantized from three different points of view, which produces three non-commutative and non-cocommutative Hopf algebra structures, and yields other three quantizations by an isomorphism of sl2 (Cq) correspondingly. Moreover, two of these quantizations can be restricted to the extended affine Lie algebra sl2(Cq).展开更多
We quantize the W-algebra W(2,2), whose Verma modules, Harish-Chandra modules, irreducible weight modules and Lie bialgebra structures have been investigated and determined in a series of papers recently.
In a previous paper,the author and his collaborator studied the problem of lifting Hamil-tonian group actions on symplectic varieties and Lagrangian subvarieties to their graded deformation quantizations and apply the...In a previous paper,the author and his collaborator studied the problem of lifting Hamil-tonian group actions on symplectic varieties and Lagrangian subvarieties to their graded deformation quantizations and apply the general results to coadjoint orbit method for semisimple Lie groups.Only even quantizations were considered there.In this paper,these results are generalized to the case of general quantizations with arbitrary periods.The key step is to introduce an enhanced version of the(truncated)period map defined by Bezrukavnikov and Kaledin for quantizations of any smooth sym-plectic variety X,with values in the space of Picard Lie algebroid over X.As an application,we study quantizations of nilpotent orbits of real semisimple groups satisfying certain codimension condition.展开更多
Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in speci...Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.展开更多
Quantization noise caused by analog-to-digital converter(ADC)gives rise to the reliability performance degradation of communication systems.In this paper,a quantized non-Hermitian symmetry(NHS)orthogonal frequency-div...Quantization noise caused by analog-to-digital converter(ADC)gives rise to the reliability performance degradation of communication systems.In this paper,a quantized non-Hermitian symmetry(NHS)orthogonal frequency-division multiplexing-based visible light communication(OFDM-VLC)system is presented.In order to analyze the effect of the resolution of ADC on NHS OFDM-VLC,a quantized mathematical model of NHS OFDM-VLC is established.Based on the proposed quantized model,a closed-form bit error rate(BER)expression is derived.The theoretical analysis and simulation results both confirm the effectiveness of the obtained BER formula in high-resolution ADC.In addition,channel coding is helpful in compensating for the BER performance loss due to the utilization of lower resolution ADC.展开更多
The Tarim Basin has revealed numerous tight sandstone oil and gas reservoirs.The tidal fl at zone in the Shunbei area is currently in the detailed exploration stage,requiring a comprehensive description of the sand bo...The Tarim Basin has revealed numerous tight sandstone oil and gas reservoirs.The tidal fl at zone in the Shunbei area is currently in the detailed exploration stage,requiring a comprehensive description of the sand body distribution characteristics for rational exploration well deployment.However,using a single method for sand body prediction has yielded poor results.Seismic facies analysis can eff ectively predict the macro-development characteristics of sedimentary sand bodies but lacks the resolution to capture fine details.In contrast,single-well sedimentary facies analysis can describe detailed sand body development but struggles to reveal broader trends.Therefore,this study proposes a method that combines seismic facies analysis with single-well sedimentary microfacies analysis,using the lower section of the Kepingtage Formation in the Shunbei area as a case study.First,seismic facies were obtained through unsupervised vector quantization to control the macro-distribution characteristics of sand bodies,while principal component analysis(PCA)was applied to improve the depiction of fine sand body details from seismic attributes.Based on 3D seismic data,well-logging data,and geological interpretation results,a detailed structural interpretation was performed to establish a high-precision stratigraphic framework,thereby enhancing the accuracy of sand body prediction.Seismic facies analysis was then conducted to obtain the macro-distribution characteristics of the sand bodies.Subsequently,core data and logging curves from individual wells were used to clarify the vertical development characteristics of tidal channels and sandbars.Next,PCA was employed to select the seismic attributes most sensitive to sand bodies in diff erent sedimentary facies.Results indicate that RMS amplitude in the subtidal zone and instantaneous phase in the intertidal zone are the most sensitive to sand bodies.A comparative analysis of individual seismic attributes for sand body characterization revealed that facies-based delineation improved the accuracy of sand body identification,eff ectively capturing their contours and shapes.This method,which integrates seismic facies,single-well sedimentary microfacies,and machine learning techniques,enhances the precision of sand body characterization and off ers a novel approach to sand body prediction.展开更多
The issue of privacy leakage in distributed consensus has garnered significant attention over the years,but existing studies often overlook the challenges posed by limited communication in algorithm design.This paper ...The issue of privacy leakage in distributed consensus has garnered significant attention over the years,but existing studies often overlook the challenges posed by limited communication in algorithm design.This paper addresses the issue of privacy preservation in distributed weighted average consensus under limited communication scenarios.Specifically targeting directed and unbalanced topologies,we propose a privacy-preserving implementation protocol that incorporates the Paillier homomorphic encryption scheme.The protocol encrypts only the 1-bit quantized messages exchanged between agents,thus ensuring both the correctness of the consensus result and the confidentiality of each agent's initial state.To demonstrate the practicality of the proposed method,we carry out numerical simulations that illustrate its ability to reach consensus effectively while ensuring the protection of private information.展开更多
The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classificati...The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classification.However,BERT’s size and computational demands limit its practicality,especially in resource-constrained settings.This research compresses the BERT base model for Bengali emotion classification through knowledge distillation(KD),pruning,and quantization techniques.Despite Bengali being the sixth most spoken language globally,NLP research in this area is limited.Our approach addresses this gap by creating an efficient BERT-based model for Bengali text.We have explored 20 combinations for KD,quantization,and pruning,resulting in improved speedup,fewer parameters,and reduced memory size.Our best results demonstrate significant improvements in both speed and efficiency.For instance,in the case of mBERT,we achieved a 3.87×speedup and 4×compression ratio with a combination of Distil+Prune+Quant that reduced parameters from 178 to 46 M,while the memory size decreased from 711 to 178 MB.These results offer scalable solutions for NLP tasks in various languages and advance the field of model compression,making these models suitable for real-world applications in resource-limited environments.展开更多
A new phenomenological model(axionic QCD string)is constructed to study the topological issues of the QCD vacuum and hadron structure.It provides an alternative way of tackling the Strong CP problem,which is different...A new phenomenological model(axionic QCD string)is constructed to study the topological issues of the QCD vacuum and hadron structure.It provides an alternative way of tackling the Strong CP problem,which is different from the traditional Peccei–Quinn approach.Neither new particle nor extra symmetry is introduced,and the role of the Peccei–Quinn axion is played by a quasiparticle arising from the phase of the quark condensate,dubbed as axionic excitation.The derivative of this excitation field is decomposed into a regular part and a singular part,and the latter contains vorticity from the string configuration.A hidden gauge symmetry is revealed in this decomposition and vorticity is represented by an emergent gauge field associated with anomalies.These components,together with the anomaly-inflow mechanism,complete the effective Lagrangian description for the axionic QCD string.展开更多
Myocardial infarction(MI)is one of the leading causes of death globally among cardiovascular diseases,necessitating modern and accurate diagnostics for cardiac patient conditions.Among the available functional diagnos...Myocardial infarction(MI)is one of the leading causes of death globally among cardiovascular diseases,necessitating modern and accurate diagnostics for cardiac patient conditions.Among the available functional diagnostic methods,electrocardiography(ECG)is particularly well-known for its ability to detect MI.However,confirming its accuracy—particularly in identifying the localization of myocardial damage—often presents challenges in practice.This study,therefore,proposes a new approach based on machine learning models for the analysis of 12-lead ECG data to accurately identify the localization of MI.In particular,the learning vector quantization(LVQ)algorithm was applied,considering the contribution of each ECG lead in the 12-channel system,which obtained an accuracy of 87%in localizing damaged myocardium.The developed model was tested on verified data from the PTB database,including 445 ECG recordings from both healthy individuals and MI-diagnosed patients.The results demonstrated that the 12-lead ECG system allows for a comprehensive understanding of cardiac activities in myocardial infarction patients,serving as an essential tool for the diagnosis of myocardial conditions and localizing their damage.A comprehensive comparison was performed,including CNN,SVM,and Logistic Regression,to evaluate the proposed LVQ model.The results demonstrate that the LVQ model achieves competitive performance in diagnostic tasks while maintaining computational efficiency,making it suitable for resource-constrained environments.This study also applies a carefully designed data pre-processing flow,including class balancing and noise removal,which improves the reliability and reproducibility of the results.These aspects highlight the potential application of the LVQ model in cardiac diagnostics,opening up prospects for its use along with more complex neural network architectures.展开更多
We consider a relativistic two-fluid model of superfluidity,in which the superfluid is described by an order parameter that is a complex scalar field satisfying the nonlinear Klein-Gordon equation(NLKG).The coupling t...We consider a relativistic two-fluid model of superfluidity,in which the superfluid is described by an order parameter that is a complex scalar field satisfying the nonlinear Klein-Gordon equation(NLKG).The coupling to the normal fluid is introduced via a covariant current-current interaction,which results in the addition of an effective potential,whose imaginary part describes particle transfer between superfluid and normal fluid.Quantized vorticity arises in a class of singular solutions and the related vortex dynamics is incorporated in the modified NLKG,facilitating numerical analysis which is usually very complicated in the phenomenology of vortex filaments.The dual transformation to a string theory description(Kalb-Ramond)of quantum vorticity,the Magnus force,and the mutual friction between quantized vortices and normal fluid are also studied.展开更多
This paper proposes a novel method for the automatic diagnosis of keratitis using feature vector quantization and self-attention mechanisms(ADK_FVQSAM).First,high-level features are extracted using the DenseNet121 bac...This paper proposes a novel method for the automatic diagnosis of keratitis using feature vector quantization and self-attention mechanisms(ADK_FVQSAM).First,high-level features are extracted using the DenseNet121 backbone network,followed by adaptive average pooling to scale the features to a fixed length.Subsequently,product quantization with residuals(PQR)is applied to convert continuous feature vectors into discrete features representations,preserving essential information insensitive to image quality variations.The quantized and original features are concatenated and fed into a self-attention mechanism to capture keratitis-related features.Finally,these enhanced features are classified through a fully connected layer.Experiments on clinical low-quality(LQ)images show that ADK_FVQSAM achieves accuracies of 87.7%,81.9%,and 89.3% for keratitis,other corneal abnormalities,and normal corneas,respectively.Compared to DenseNet121,Swin transformer,and InceptionResNet,ADK_FVQSAM improves average accuracy by 3.1%,11.3%,and 15.3%,respectively.These results demonstrate that ADK_FVQSAM significantly enhances the recognition performance of keratitis based on LQ slit-lamp images,offering a practical approach for clinical application.展开更多
In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of un...In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.展开更多
In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the ...In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the T-S fuzzy method. Two time-varying quantizers are added in the model. The key analysis steps in the method are to construct an improved interval-delay-dependent Lyapunov functional and to introduce the free-weighting matrix. By making use of the parallel distributed compensation technology and the convexity of the matrix function, the improved criteria of the stabilization and stability are obtained. Simulation experiments show that the parameters of the controllers and quantizers satisfying a certain performance can be obtained by solving a set of LMIs. The application of the nonlinear mass-spring system is provided to show that the proposed method is effective.展开更多
A VQ based efficient speech recognition method is introduced, and the key parameters of this method are comparatively studied. This method is especially designed for mandarin speaker dependent small size word set r...A VQ based efficient speech recognition method is introduced, and the key parameters of this method are comparatively studied. This method is especially designed for mandarin speaker dependent small size word set recognition. It has less complexity, less resource consumption but higher ARR (accurate recognition rate) compared with traditional HMM or NN approach. A large scale test on the task of 11 mandarin digits recognition shows that the WER(word error rate) can reach 3 86%. This method is suitable for being embedded in PDA (personal digital assistant), mobile phone and so on to perform voice controlling like digits dialing, name dialing, calculating, voice commanding, etc.展开更多
Loop Quantum Gravity is widely developed using canonical quantization in an effort to find the correct quantization for gravity. Affine quantization, which is like canonical quantization augmented and bounded in one o...Loop Quantum Gravity is widely developed using canonical quantization in an effort to find the correct quantization for gravity. Affine quantization, which is like canonical quantization augmented and bounded in one orientation, e.g., a strictly positive coordinate. We open discussion using canonical and affine quantizations for two simple problems so each procedure can be understood. That analysis opens a modest treatment of quantum gravity gleaned from some typical features that exhibit the profound differences between aspects of seeking the quantum treatment of Einstein’s gravity.展开更多
Quantized control systems design is motivated by the convergence of controls and communications to address modern engineering applications involving the use of information technology. This paper presents an overview o...Quantized control systems design is motivated by the convergence of controls and communications to address modern engineering applications involving the use of information technology. This paper presents an overview of recent developments on the control of linear and nonlinear systems when the control input is subject to quantization or the quantized states or outputs are used as feedback measurements. The co-existence of high-dimeasionality, quantization, nonlinearity and uncertainty poses great challenges to quantized control of nonlinear systems and thus calls for new ideas and techniques. The field of quantized nonlinear control is still at its infancy. Preliminary results in our recent work based on input-to-state stability and cyclic-small-gain theorems are reviewed. The open problems in quantized nonlinear control are also outlined.展开更多
文摘It is well known that the representations over an arbitrary configuration space related to a physical system of the Heisenberg algebra allow to distinguish the simply and non simply-connected manifolds [arXiv:quant-ph/9908.014, arXiv:hep-th/0608.023]. In the light of this classification, the dynamics of a quantum particle on the line is studied in the framework of the conventional quantization scheme as well as that of the enhanced quantization recently introduced by J. R. Klauder [arXiv:quant-ph/1204.2870]. The quantum action functional restricted to the phase space coherent states is obtained from the enhanced quantization procedure, showing the coexistence of classical and quantum theories, a fundamental advantage offered by this new approach. The example of the one dimensional harmonic oscillator is given. Next, the spectrum of a free particle on the two-sphere is recognized from the covariant diffeomorphic representations of the momentum operator in the configuration space. Our results based on simple models also point out the already-known link between interaction and topology at quantum level.
文摘In this paper, the extended affine Lie algebra sl2(Cq) is quantized from three different points of view, which produces three non-commutative and non-cocommutative Hopf algebra structures, and yields other three quantizations by an isomorphism of sl2 (Cq) correspondingly. Moreover, two of these quantizations can be restricted to the extended affine Lie algebra sl2(Cq).
基金Supported by NSF'of China (Grant Nos. 10825101, 10926166), Special Grade of the Financial Support from China Postdoctoral Science Foundation (Grant No. 201003326) and the Natural Science Research Project for Higher Institutions of Jiangsu Province (Grant No. 09KJB110001)
文摘We quantize the W-algebra W(2,2), whose Verma modules, Harish-Chandra modules, irreducible weight modules and Lie bialgebra structures have been investigated and determined in a series of papers recently.
基金Supported by China NSFC grants(Grant Nos.12001453 and 12131018)Fundamental Research Funds for the Central Universities(Grant Nos.20720200067 and 20720200071)。
文摘In a previous paper,the author and his collaborator studied the problem of lifting Hamil-tonian group actions on symplectic varieties and Lagrangian subvarieties to their graded deformation quantizations and apply the general results to coadjoint orbit method for semisimple Lie groups.Only even quantizations were considered there.In this paper,these results are generalized to the case of general quantizations with arbitrary periods.The key step is to introduce an enhanced version of the(truncated)period map defined by Bezrukavnikov and Kaledin for quantizations of any smooth sym-plectic variety X,with values in the space of Picard Lie algebroid over X.As an application,we study quantizations of nilpotent orbits of real semisimple groups satisfying certain codimension condition.
基金supported by the National Key R&D Program of China(No.2021YFB0301200)National Natural Science Foundation of China(No.62025208).
文摘Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in specific tasks with reduced training costs,the substantial memory requirements during fine-tuning present a barrier to broader deployment.Parameter-Efficient Fine-Tuning(PEFT)techniques,such as Low-Rank Adaptation(LoRA),and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency.Among these,QLoRA,which combines PEFT and quantization,has demonstrated notable success in reducing memory footprints during fine-tuning,prompting the development of various QLoRA variants.Despite these advancements,the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored.This study presents a comprehensive analysis of these key variables,focusing on their influence across different layer types and depths within LLM architectures.Our investigation uncovers several critical findings:(1)Larger layers,such as MLP layers,can maintain performance despite reductions in adapter rank,while smaller layers,like self-attention layers,aremore sensitive to such changes;(2)The effectiveness of balancing factors depends more on specific values rather than layer type or depth;(3)In quantization-aware fine-tuning,larger layers can effectively utilize smaller adapters,whereas smaller layers struggle to do so.These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs.Moreover,for the same discount of trainable parameters,reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one.This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.
基金supported by the National Natural Science Foundation of China(No.62201508)the Zhejiang Provincial Natural Science Foundation of China(Nos.LZ21F010001 and LQ23F010004)the State Key Laboratory of Millimeter Waves of Southeast University,China(No.K202212).
文摘Quantization noise caused by analog-to-digital converter(ADC)gives rise to the reliability performance degradation of communication systems.In this paper,a quantized non-Hermitian symmetry(NHS)orthogonal frequency-division multiplexing-based visible light communication(OFDM-VLC)system is presented.In order to analyze the effect of the resolution of ADC on NHS OFDM-VLC,a quantized mathematical model of NHS OFDM-VLC is established.Based on the proposed quantized model,a closed-form bit error rate(BER)expression is derived.The theoretical analysis and simulation results both confirm the effectiveness of the obtained BER formula in high-resolution ADC.In addition,channel coding is helpful in compensating for the BER performance loss due to the utilization of lower resolution ADC.
基金Collaborative Project Grant from the Exploration and Development Research Institute of SINOPEC Northwest Oilfi eld Company(Grant No.KY2021-S-104).
文摘The Tarim Basin has revealed numerous tight sandstone oil and gas reservoirs.The tidal fl at zone in the Shunbei area is currently in the detailed exploration stage,requiring a comprehensive description of the sand body distribution characteristics for rational exploration well deployment.However,using a single method for sand body prediction has yielded poor results.Seismic facies analysis can eff ectively predict the macro-development characteristics of sedimentary sand bodies but lacks the resolution to capture fine details.In contrast,single-well sedimentary facies analysis can describe detailed sand body development but struggles to reveal broader trends.Therefore,this study proposes a method that combines seismic facies analysis with single-well sedimentary microfacies analysis,using the lower section of the Kepingtage Formation in the Shunbei area as a case study.First,seismic facies were obtained through unsupervised vector quantization to control the macro-distribution characteristics of sand bodies,while principal component analysis(PCA)was applied to improve the depiction of fine sand body details from seismic attributes.Based on 3D seismic data,well-logging data,and geological interpretation results,a detailed structural interpretation was performed to establish a high-precision stratigraphic framework,thereby enhancing the accuracy of sand body prediction.Seismic facies analysis was then conducted to obtain the macro-distribution characteristics of the sand bodies.Subsequently,core data and logging curves from individual wells were used to clarify the vertical development characteristics of tidal channels and sandbars.Next,PCA was employed to select the seismic attributes most sensitive to sand bodies in diff erent sedimentary facies.Results indicate that RMS amplitude in the subtidal zone and instantaneous phase in the intertidal zone are the most sensitive to sand bodies.A comparative analysis of individual seismic attributes for sand body characterization revealed that facies-based delineation improved the accuracy of sand body identification,eff ectively capturing their contours and shapes.This method,which integrates seismic facies,single-well sedimentary microfacies,and machine learning techniques,enhances the precision of sand body characterization and off ers a novel approach to sand body prediction.
基金supported by National Natural Science Foundation of China under Grants 62203045,62433020 and T2293770。
文摘The issue of privacy leakage in distributed consensus has garnered significant attention over the years,but existing studies often overlook the challenges posed by limited communication in algorithm design.This paper addresses the issue of privacy preservation in distributed weighted average consensus under limited communication scenarios.Specifically targeting directed and unbalanced topologies,we propose a privacy-preserving implementation protocol that incorporates the Paillier homomorphic encryption scheme.The protocol encrypts only the 1-bit quantized messages exchanged between agents,thus ensuring both the correctness of the consensus result and the confidentiality of each agent's initial state.To demonstrate the practicality of the proposed method,we carry out numerical simulations that illustrate its ability to reach consensus effectively while ensuring the protection of private information.
文摘The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classification.However,BERT’s size and computational demands limit its practicality,especially in resource-constrained settings.This research compresses the BERT base model for Bengali emotion classification through knowledge distillation(KD),pruning,and quantization techniques.Despite Bengali being the sixth most spoken language globally,NLP research in this area is limited.Our approach addresses this gap by creating an efficient BERT-based model for Bengali text.We have explored 20 combinations for KD,quantization,and pruning,resulting in improved speedup,fewer parameters,and reduced memory size.Our best results demonstrate significant improvements in both speed and efficiency.For instance,in the case of mBERT,we achieved a 3.87×speedup and 4×compression ratio with a combination of Distil+Prune+Quant that reduced parameters from 178 to 46 M,while the memory size decreased from 711 to 178 MB.These results offer scalable solutions for NLP tasks in various languages and advance the field of model compression,making these models suitable for real-world applications in resource-limited environments.
基金supported by the Natural Science Foundation of Fujian Province(Grant No.2022J011130)the Research Starting Grant from Minjiang University(Grant No.30804317)。
文摘A new phenomenological model(axionic QCD string)is constructed to study the topological issues of the QCD vacuum and hadron structure.It provides an alternative way of tackling the Strong CP problem,which is different from the traditional Peccei–Quinn approach.Neither new particle nor extra symmetry is introduced,and the role of the Peccei–Quinn axion is played by a quasiparticle arising from the phase of the quark condensate,dubbed as axionic excitation.The derivative of this excitation field is decomposed into a regular part and a singular part,and the latter contains vorticity from the string configuration.A hidden gauge symmetry is revealed in this decomposition and vorticity is represented by an emergent gauge field associated with anomalies.These components,together with the anomaly-inflow mechanism,complete the effective Lagrangian description for the axionic QCD string.
基金funded by the Ministry of Science and Higher Education of the Republic of Kazakhstan,grant numbers AP14969403 and AP23485820.
文摘Myocardial infarction(MI)is one of the leading causes of death globally among cardiovascular diseases,necessitating modern and accurate diagnostics for cardiac patient conditions.Among the available functional diagnostic methods,electrocardiography(ECG)is particularly well-known for its ability to detect MI.However,confirming its accuracy—particularly in identifying the localization of myocardial damage—often presents challenges in practice.This study,therefore,proposes a new approach based on machine learning models for the analysis of 12-lead ECG data to accurately identify the localization of MI.In particular,the learning vector quantization(LVQ)algorithm was applied,considering the contribution of each ECG lead in the 12-channel system,which obtained an accuracy of 87%in localizing damaged myocardium.The developed model was tested on verified data from the PTB database,including 445 ECG recordings from both healthy individuals and MI-diagnosed patients.The results demonstrated that the 12-lead ECG system allows for a comprehensive understanding of cardiac activities in myocardial infarction patients,serving as an essential tool for the diagnosis of myocardial conditions and localizing their damage.A comprehensive comparison was performed,including CNN,SVM,and Logistic Regression,to evaluate the proposed LVQ model.The results demonstrate that the LVQ model achieves competitive performance in diagnostic tasks while maintaining computational efficiency,making it suitable for resource-constrained environments.This study also applies a carefully designed data pre-processing flow,including class balancing and noise removal,which improves the reliability and reproducibility of the results.These aspects highlight the potential application of the LVQ model in cardiac diagnostics,opening up prospects for its use along with more complex neural network architectures.
文摘We consider a relativistic two-fluid model of superfluidity,in which the superfluid is described by an order parameter that is a complex scalar field satisfying the nonlinear Klein-Gordon equation(NLKG).The coupling to the normal fluid is introduced via a covariant current-current interaction,which results in the addition of an effective potential,whose imaginary part describes particle transfer between superfluid and normal fluid.Quantized vorticity arises in a class of singular solutions and the related vortex dynamics is incorporated in the modified NLKG,facilitating numerical analysis which is usually very complicated in the phenomenology of vortex filaments.The dual transformation to a string theory description(Kalb-Ramond)of quantum vorticity,the Magnus force,and the mutual friction between quantized vortices and normal fluid are also studied.
基金supported by the National Natural Science Foundation of China(Nos.62276210,82201148 and 62376215)the Key Research and Development Project of Shaanxi Province(No.2025CY-YBXM-044)+3 种基金the Natural Science Foundation of Zhejiang Province(No.LQ22H120002)the Medical Health Science and Technology Project of Zhejiang Province(Nos.2022RC069 and 2023KY1140)the Natural Science Foundation of Ningbo(No.2023J390)the Ningbo Top Medical and Health Research Program(No.2023030716).
文摘This paper proposes a novel method for the automatic diagnosis of keratitis using feature vector quantization and self-attention mechanisms(ADK_FVQSAM).First,high-level features are extracted using the DenseNet121 backbone network,followed by adaptive average pooling to scale the features to a fixed length.Subsequently,product quantization with residuals(PQR)is applied to convert continuous feature vectors into discrete features representations,preserving essential information insensitive to image quality variations.The quantized and original features are concatenated and fed into a self-attention mechanism to capture keratitis-related features.Finally,these enhanced features are classified through a fully connected layer.Experiments on clinical low-quality(LQ)images show that ADK_FVQSAM achieves accuracies of 87.7%,81.9%,and 89.3% for keratitis,other corneal abnormalities,and normal corneas,respectively.Compared to DenseNet121,Swin transformer,and InceptionResNet,ADK_FVQSAM improves average accuracy by 3.1%,11.3%,and 15.3%,respectively.These results demonstrate that ADK_FVQSAM significantly enhances the recognition performance of keratitis based on LQ slit-lamp images,offering a practical approach for clinical application.
基金supported in part by the National Key R&D Program of China(No.2023YFB4704400)in part by the National Natural Science Foundation of China(Nos.U23B2036,U2013201).
文摘In this paper,a distributed Event-Triggered(ET)collision avoidance coordinated control for Quadrotor Unmanned Aerial Vehicles(QUAVs)is proposed based on Virtual Tubes(VTs)with flexible boundaries in the presence of unknown external disturbances.Firstly,VTs are constructed for each QUAV,and the QUAV is restricted into the corresponding VT by the artificial potential field,which is distributed around the boundary of the VT.Thus,the collisions between QUAVs are avoided.Besides,the boundaries of the VTs are flexible by the modification signals,which are generated by the self-regulating auxiliary systems,to make the repulsive force smaller and give more buffer space for QUAVs without collision.Then,a novel ET mechanism is designed by introducing the concept of prediction to the traditional fixed threshold ET mechanism.Furthermore,a disturbance observer is proposed to deal with the adverse effects of the unknown external disturbance.On this basis,a distributed ET collision avoidance coordinated controller is proposed.Then,the proposed controller is quantized by the hysteresis uniform quantizer and then sent to the actuator only at the ET instants.The boundedness of the closed-loop signals is verified by the Lyapunov method.Finally,simulation and experimental results are performed to demonstrate the superiority of the proposed control method.
基金The National Natural Science Foundation of China(No.60474049,60835001)Specialized Research Fund for Doctoral Program of Higher Education(No.20090092120027)
文摘In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the T-S fuzzy method. Two time-varying quantizers are added in the model. The key analysis steps in the method are to construct an improved interval-delay-dependent Lyapunov functional and to introduce the free-weighting matrix. By making use of the parallel distributed compensation technology and the convexity of the matrix function, the improved criteria of the stabilization and stability are obtained. Simulation experiments show that the parameters of the controllers and quantizers satisfying a certain performance can be obtained by solving a set of LMIs. The application of the nonlinear mass-spring system is provided to show that the proposed method is effective.
文摘A VQ based efficient speech recognition method is introduced, and the key parameters of this method are comparatively studied. This method is especially designed for mandarin speaker dependent small size word set recognition. It has less complexity, less resource consumption but higher ARR (accurate recognition rate) compared with traditional HMM or NN approach. A large scale test on the task of 11 mandarin digits recognition shows that the WER(word error rate) can reach 3 86%. This method is suitable for being embedded in PDA (personal digital assistant), mobile phone and so on to perform voice controlling like digits dialing, name dialing, calculating, voice commanding, etc.
文摘Loop Quantum Gravity is widely developed using canonical quantization in an effort to find the correct quantization for gravity. Affine quantization, which is like canonical quantization augmented and bounded in one orientation, e.g., a strictly positive coordinate. We open discussion using canonical and affine quantizations for two simple problems so each procedure can be understood. That analysis opens a modest treatment of quantum gravity gleaned from some typical features that exhibit the profound differences between aspects of seeking the quantum treatment of Einstein’s gravity.
基金Supported by National Science Foundation of USA (DMS-0906659. ECCS-1230040)
文摘Quantized control systems design is motivated by the convergence of controls and communications to address modern engineering applications involving the use of information technology. This paper presents an overview of recent developments on the control of linear and nonlinear systems when the control input is subject to quantization or the quantized states or outputs are used as feedback measurements. The co-existence of high-dimeasionality, quantization, nonlinearity and uncertainty poses great challenges to quantized control of nonlinear systems and thus calls for new ideas and techniques. The field of quantized nonlinear control is still at its infancy. Preliminary results in our recent work based on input-to-state stability and cyclic-small-gain theorems are reviewed. The open problems in quantized nonlinear control are also outlined.