期刊文献+
共找到6,187篇文章
< 1 2 250 >
每页显示 20 50 100
薏苡ClVQ12的表达模式、抗旱功能及互作蛋白分析
1
作者 王永乐 路献勇 +2 位作者 王红娟 王玉娇 朱加保 《江西农业大学学报》 北大核心 2025年第4期865-877,共13页
【目的】薏苡(Coix lacryma-jobi L.)是重要的食药同源作物,干旱和土壤盐碱化对薏苡的产量与品质造成严重威胁,VQ基因家族在植物响应外界胁迫与激素诱导中发挥重要作用,克隆薏苡VQ基因家族成员ClVQ12,并分析其表达模式、抗旱能力及互作... 【目的】薏苡(Coix lacryma-jobi L.)是重要的食药同源作物,干旱和土壤盐碱化对薏苡的产量与品质造成严重威胁,VQ基因家族在植物响应外界胁迫与激素诱导中发挥重要作用,克隆薏苡VQ基因家族成员ClVQ12,并分析其表达模式、抗旱能力及互作蛋白,进一步探究VQ基因在薏苡生长发育和胁迫响应过程中所发挥的功能。【方法】以“皖薏2号”为材料,首先克隆ClVQ12和对其进行生物信息学分析;接着通过亚细胞定位试验确定其位置,使用qRT-PCR分析其在MEJA和ABA诱导、高温胁迫、盐胁迫和干旱胁迫下的表达模式,然后构建ClVQ12基因酵母表达载体并转入酵母,比较转基因酵母和对照酵母在干旱胁迫下的生长差异;并利用酵母双杂试验验证ClVQ12与ClVQs和ClWRKYs之间的相互作用。【结果】成功克隆ClVQ12,该基因开放阅读框长度为579 bp;编码192个氨基酸;等电点为5.06;平均亲水性系数为-0.52,是不稳定的亲水性蛋白;该基因定位于细胞膜和细胞核中;不含有跨膜结构域和信号肽,含有18个磷酸化位点。二级结构主要由不规则卷曲(61.46%)、α-螺旋(32.29%)、延长链(4.17%)和β-折叠(2.08%)组成。启动子顺式作用元件分析发现ClVQ12含有多个响应激素诱导和非生物胁迫的元件。表达模式分析表明,该基因受到MEJA、ABA处理和干旱胁迫的显著诱导,其表达量在高温胁迫和盐胁迫下被显著抑制。与pYES2空载酵母相比,ClVQ12转基因酵母在甘露醇模拟干旱胁迫下具有更高的存活率,生长状况更好。通过酵母双杂试验发现,ClVQ12与ClVQ4、ClVQ11、ClVQ26和ClWRKY51发生相互作用,与ClWRKY5不发生相互作用。【结论】ClVQ12基因具有典型的VQ基因家族特征,定位于细胞膜和细胞核,响应多个激素处理和非生物胁迫。ClVQ12与ClVQs和ClWRKY51发生相互作用,提高转基因酵母的耐旱性。 展开更多
关键词 薏苡 Clvq12 vq基因家族 生物信息学分析 抗旱验证 蛋白互作
在线阅读 下载PDF
白刺VQ基因家族的鉴定及分析 被引量:1
2
作者 王丽蓉 黄丽霞 +3 位作者 杜萌 易丹 王劼 杨鑫光 《西北农业学报》 北大核心 2025年第3期498-507,共10页
VQ蛋白(VQ motif-containing proteins)在高等植物的质体中起着转录调控作用且与植物耐干旱、盐碱有很大关系。为了获得白刺VQ基因家族蛋白的基本特征以及白刺VQ基因在干旱和盐胁迫下的表达特征,本研究基于白刺(Nitraria tangutorum Bob... VQ蛋白(VQ motif-containing proteins)在高等植物的质体中起着转录调控作用且与植物耐干旱、盐碱有很大关系。为了获得白刺VQ基因家族蛋白的基本特征以及白刺VQ基因在干旱和盐胁迫下的表达特征,本研究基于白刺(Nitraria tangutorum Bobr.)全长转录组数据,通过生物信息学手段鉴定并分析了白刺VQ家族蛋白的基本特征,基于白刺以及拟南芥VQ蛋白序列,利用MEGA软件建立了VQ蛋白的系统发育树,最后利用qRT-PCR方法对NtVQ7基因的组织特异性表达特征以及干旱和盐胁迫下的表达特征进行了分析。结果表明,从白刺转录组中共鉴定出7个具有完整FxxxVQxLTG保守结构域的NtVQ家族成员,分别命名为NtVQ1~NtVQ7;氨基酸数目为155~320,分子质量为17.13~34.86 ku,等电点分布为5.23~10.81,不稳定指数为37.4~93.77,且均为亲水性蛋白;除NtVQ2定位在细胞外或细胞核中,其余的成员均被定位在细胞核中;系统发育树显示NtVQ1与NtVQ2、NtVQ3与NtVQ7的亲缘关系最近;叶片中的NtVQ7对PEG和NaCl胁迫做出不同响应,相对于PEG胁迫NtVQ7对盐胁迫更加敏感,且在盐胁迫后恢复过程中其表达量恢复上调;另外,该基因在不同组织器官中呈现不同的表达特征。 展开更多
关键词 vq基因家族 白刺 生物信息学 表达特征 胁迫
在线阅读 下载PDF
柠檬VQ家族成员鉴定及其响应CYVCV侵染分析
3
作者 方书洁 张晓男 +3 位作者 郭雪扬 李向 易龙 周俊 《桉树科技》 2025年第3期93-104,共12页
解析柠檬VQ家族基因特征及柠檬抗病毒侵染分子机制,为柠檬VQ基因的结构与功能及抗病机理研究提供可靠理论依据。通过生物信息学方法鉴定柠檬VQ家族成员,分析其理化性质、保守基序以及顺式作用元件等结构,将柑橘黄化脉明病毒(CYVCV)嫁接... 解析柠檬VQ家族基因特征及柠檬抗病毒侵染分子机制,为柠檬VQ基因的结构与功能及抗病机理研究提供可靠理论依据。通过生物信息学方法鉴定柠檬VQ家族成员,分析其理化性质、保守基序以及顺式作用元件等结构,将柑橘黄化脉明病毒(CYVCV)嫁接至‘尤力克’柠檬上,通过RT-q PCR验证候选基因表达量。结果表明:共鉴定52个柠檬VQ家族基因(ClVQs),分布于16条染色体,编码121~488个氨基酸,相对分子量为13.26~51.85 k Da,等电点为4.42~10.78,多为碱性不稳定蛋白,多数由含单外显子的基因编码,多数定位于细胞核。所有ClVQs均含有高度保守的VQ基序Fxxx VQx(L/V/F)TG,系统进化分析将其分为8个亚家族,其中7个与拟南芥、水稻同源基因聚簇;52个Cl VQs间存在39对片段复制基因;其启动子区域富含光敏、茉莉酸、脱落酸及逆境应答等顺式作用元件。在CYVCV侵染‘尤力克’柠檬后,RT-q PCR数据显示9个ClVQs呈现显著差异表达模式。 展开更多
关键词 柠檬 vq基因家族 表达分析 柑橘黄化脉明病毒
在线阅读 下载PDF
基于VQ-VAE的船用设备轴承故障诊断模型
4
作者 刘建男 车驰东 《船舶工程》 北大核心 2025年第6期53-62,共10页
[目的]针对轴承故障诊断中样本不充分、分布不均衡的问题,提出一种基于向量量化自编码器(VQ-VAE)的轴承故障诊断模型。[方法]利用VQ-VAE将轴承振动时频图压缩得到离散特征空间,并通过像素卷积神经网络(PixelCNN)采样得到全新的故障样本... [目的]针对轴承故障诊断中样本不充分、分布不均衡的问题,提出一种基于向量量化自编码器(VQ-VAE)的轴承故障诊断模型。[方法]利用VQ-VAE将轴承振动时频图压缩得到离散特征空间,并通过像素卷积神经网络(PixelCNN)采样得到全新的故障样本用于扩充、平衡轴承故障数据集。在经典轴承故障数据集进行样本生成试验,并在不同负载的轴承振动数据集上进行跨工况故障诊断迁移学习。[结果]通过生成和诊断结果的对比分析证明,提出的方法能够生成高质量的轴承故障样本对数据集进行扩充,并且能够通过迁移学习在跨工况的故障诊断中取得较高的准确率。[结论]研究结果为船用设备轴承故障诊断方法提供参考。 展开更多
关键词 故障诊断 向量量化自编码器 迁移学习 跨工况
原文传递
Optimizing BERT for Bengali Emotion Classification: Evaluating Knowledge Distillation, Pruning, and Quantization
5
作者 Md Hasibur Rahman Mohammed Arif Uddin +1 位作者 Zinnat Fowzia Ria Rashedur M.Rahman 《Computer Modeling in Engineering & Sciences》 2025年第2期1637-1666,共30页
The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classificati... The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classification.However,BERT’s size and computational demands limit its practicality,especially in resource-constrained settings.This research compresses the BERT base model for Bengali emotion classification through knowledge distillation(KD),pruning,and quantization techniques.Despite Bengali being the sixth most spoken language globally,NLP research in this area is limited.Our approach addresses this gap by creating an efficient BERT-based model for Bengali text.We have explored 20 combinations for KD,quantization,and pruning,resulting in improved speedup,fewer parameters,and reduced memory size.Our best results demonstrate significant improvements in both speed and efficiency.For instance,in the case of mBERT,we achieved a 3.87×speedup and 4×compression ratio with a combination of Distil+Prune+Quant that reduced parameters from 178 to 46 M,while the memory size decreased from 711 to 178 MB.These results offer scalable solutions for NLP tasks in various languages and advance the field of model compression,making these models suitable for real-world applications in resource-limited environments. 展开更多
关键词 Bengali NLP black-box distillation emotion classification model compression post-training quantization unstructured pruning
在线阅读 下载PDF
Neural Network Algorithm Based on LVQ for Myocardial Infarction Detection and Localization Using Multi-Lead ECG Data
6
作者 Kassymbek Ozhikenov Zhadyra Alimbayeva +2 位作者 Chingiz Alimbayev Aiman Ozhikenova Yeldos Altay 《Computers, Materials & Continua》 2025年第3期5257-5284,共28页
Myocardial infarction(MI)is one of the leading causes of death globally among cardiovascular diseases,necessitating modern and accurate diagnostics for cardiac patient conditions.Among the available functional diagnos... Myocardial infarction(MI)is one of the leading causes of death globally among cardiovascular diseases,necessitating modern and accurate diagnostics for cardiac patient conditions.Among the available functional diagnostic methods,electrocardiography(ECG)is particularly well-known for its ability to detect MI.However,confirming its accuracy—particularly in identifying the localization of myocardial damage—often presents challenges in practice.This study,therefore,proposes a new approach based on machine learning models for the analysis of 12-lead ECG data to accurately identify the localization of MI.In particular,the learning vector quantization(LVQ)algorithm was applied,considering the contribution of each ECG lead in the 12-channel system,which obtained an accuracy of 87%in localizing damaged myocardium.The developed model was tested on verified data from the PTB database,including 445 ECG recordings from both healthy individuals and MI-diagnosed patients.The results demonstrated that the 12-lead ECG system allows for a comprehensive understanding of cardiac activities in myocardial infarction patients,serving as an essential tool for the diagnosis of myocardial conditions and localizing their damage.A comprehensive comparison was performed,including CNN,SVM,and Logistic Regression,to evaluate the proposed LVQ model.The results demonstrate that the LVQ model achieves competitive performance in diagnostic tasks while maintaining computational efficiency,making it suitable for resource-constrained environments.This study also applies a carefully designed data pre-processing flow,including class balancing and noise removal,which improves the reliability and reproducibility of the results.These aspects highlight the potential application of the LVQ model in cardiac diagnostics,opening up prospects for its use along with more complex neural network architectures. 展开更多
关键词 ELECTROCARDIOGRAPHY 12-lead electrocardiogram myocardial infarction heart disease learning vector quantization algorithm machine learning
在线阅读 下载PDF
荔枝VQ基因家族鉴定及其对非生物胁迫的响应 被引量:2
7
作者 凡超 杨杰 +2 位作者 陈蓉 刘伟 向旭 《西北植物学报》 CAS CSCD 北大核心 2024年第5期739-750,共12页
【目的】VQ蛋白是一类含有保守VQ基序(FxxhVQxhTG)的植物特异性蛋白,在植物生长发育和非生物胁迫应答中发挥重要作用。研究鉴定了荔枝VQ基因家族,并分析其在不同组织的表达模式及在低温、高温、干旱和盐胁迫下的应答,为后续研究其抗逆... 【目的】VQ蛋白是一类含有保守VQ基序(FxxhVQxhTG)的植物特异性蛋白,在植物生长发育和非生物胁迫应答中发挥重要作用。研究鉴定了荔枝VQ基因家族,并分析其在不同组织的表达模式及在低温、高温、干旱和盐胁迫下的应答,为后续研究其抗逆机制奠定了基础。【方法】用生物信息学方法在荔枝全基因组中鉴定LcVQ基因,并对其理化性质、亚细胞定位、基因结构和保守基序等进行分析;用MEGA 6.0软件构建系统发育树,分析荔枝、拟南芥和水稻VQ蛋白的系统发育关系;用实时荧光定量PCR(qRT-PCR)技术验证LcVQs对多种非生物胁迫的响应情况。【结果】荔枝中共鉴定获得可聚类为9个亚族的18个VQ基因(LcVQ1-18),依次分布在荔枝的11条染色体上,其编码蛋白的氨基酸数介于111~427之间,分子质量为12.48~45.49 kD;除LcVQ15和LcVQ17定位于细胞质之外,其余LcVQ蛋白均定位于细胞核。LcVQs启动子区域包含大量植物生长发育响应元件、激素响应元件及逆境响应元件。LcVQs的表达量在不同组织中具有明显差异,总体上分为普遍性表达和特异性表达。LcVQs可快速响应非生物胁迫,在低温、高温、干旱和盐胁迫处理3 h内分别有4,3,3,4个LcVQs明显上调表达。【结论】荔枝全基因组中有18个VQ家族成员,具有典型VQ保守结构域,能差异化响应多种非生物胁迫。 展开更多
关键词 荔枝 vq基因家族 生物信息学 非生物胁迫 表达分析
在线阅读 下载PDF
普通烟草VQ家族基因的鉴定及表达
8
作者 王东 李志远 +7 位作者 周平 蒲文宣 毛辉 王雪云 张新要 刘万峰 陈前锋 李晓旭 《分子植物育种》 CAS 北大核心 2024年第9期2856-2863,共8页
VQ家族是一类植物特有的家族,被报道参与生长发育、生物和非生物逆境胁迫响应等过程。本研究利用生物信息学和比较基因组学的方法,在烟草基因组中对VQ家族成员进行鉴定,并进行进化分析、共线性分析、复制分析以及表达模式等分析。本研... VQ家族是一类植物特有的家族,被报道参与生长发育、生物和非生物逆境胁迫响应等过程。本研究利用生物信息学和比较基因组学的方法,在烟草基因组中对VQ家族成员进行鉴定,并进行进化分析、共线性分析、复制分析以及表达模式等分析。本研究从烟草基因组中鉴定出57个VQ家族成员编码基因,其中33个普通烟草VQ基因被锚定到染色体上。系统发育分析发现,普通烟草和拟南芥的VQ家族成员被分成了9个亚家族。共线性分析表明,普通烟草NtVQ23与拟南芥中的AtVQ16形成共线性基因对。同时,对烟草基因组中的复制事件分析表明,全基因组重复事件在VQ家族成员的扩张中发挥着重要作用。此外,还对部分VQ家族成员的表达模式进行了分析,结果表明VQ基因的表达具有组织特异性,NtVQ9、NtVQ26等基因能够被青枯病接种和盐胁迫处理显著诱导。本研究对普通烟草VQ家族成员进行了鉴定与分析,为其后续研究VQ家族成员的功能提供了一定基础。 展开更多
关键词 烟草 vq家族 生物逆境胁迫 非生物逆境胁迫
原文传递
Activation Redistribution Based Hybrid Asymmetric Quantization Method of Neural Networks 被引量:1
9
作者 Lu Wei Zhong Ma Chaojie Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期981-1000,共20页
The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedd... The demand for adopting neural networks in resource-constrained embedded devices is continuously increasing.Quantization is one of the most promising solutions to reduce computational cost and memory storage on embedded devices.In order to reduce the complexity and overhead of deploying neural networks on Integeronly hardware,most current quantization methods use a symmetric quantization mapping strategy to quantize a floating-point neural network into an integer network.However,although symmetric quantization has the advantage of easier implementation,it is sub-optimal for cases where the range could be skewed and not symmetric.This often comes at the cost of lower accuracy.This paper proposed an activation redistribution-based hybrid asymmetric quantizationmethod for neural networks.The proposedmethod takes data distribution into consideration and can resolve the contradiction between the quantization accuracy and the ease of implementation,balance the trade-off between clipping range and quantization resolution,and thus improve the accuracy of the quantized neural network.The experimental results indicate that the accuracy of the proposed method is 2.02%and 5.52%higher than the traditional symmetric quantization method for classification and detection tasks,respectively.The proposed method paves the way for computationally intensive neural network models to be deployed on devices with limited computing resources.Codes will be available on https://github.com/ycjcy/Hybrid-Asymmetric-Quantization. 展开更多
关键词 quantization neural network hybrid asymmetric ACCURACY
在线阅读 下载PDF
Reinforcement Learning Based Quantization Strategy Optimal Assignment Algorithm for Mixed Precision
10
作者 Yuejiao Wang Zhong Ma +2 位作者 Chaojie Yang Yu Yang Lu Wei 《Computers, Materials & Continua》 SCIE EI 2024年第4期819-836,共18页
The quantization algorithm compresses the original network by reducing the numerical bit width of the model,which improves the computation speed. Because different layers have different redundancy and sensitivity to d... The quantization algorithm compresses the original network by reducing the numerical bit width of the model,which improves the computation speed. Because different layers have different redundancy and sensitivity to databit width. Reducing the data bit width will result in a loss of accuracy. Therefore, it is difficult to determinethe optimal bit width for different parts of the network with guaranteed accuracy. Mixed precision quantizationcan effectively reduce the amount of computation while keeping the model accuracy basically unchanged. In thispaper, a hardware-aware mixed precision quantization strategy optimal assignment algorithm adapted to low bitwidth is proposed, and reinforcement learning is used to automatically predict the mixed precision that meets theconstraints of hardware resources. In the state-space design, the standard deviation of weights is used to measurethe distribution difference of data, the execution speed feedback of simulated neural network accelerator inferenceis used as the environment to limit the action space of the agent, and the accuracy of the quantization model afterretraining is used as the reward function to guide the agent to carry out deep reinforcement learning training. Theexperimental results show that the proposed method obtains a suitable model layer-by-layer quantization strategyunder the condition that the computational resources are satisfied, and themodel accuracy is effectively improved.The proposed method has strong intelligence and certain universality and has strong application potential in thefield of mixed precision quantization and embedded neural network model deployment. 展开更多
关键词 Mixed precision quantization quantization strategy optimal assignment reinforcement learning neural network model deployment
在线阅读 下载PDF
In situ calibrated angle between the quantization axis and the propagating direction of the light field for trapping neutral atoms
11
作者 郭瑞军 何晓东 +7 位作者 盛诚 王坤鹏 许鹏 刘敏 王谨 孙晓红 曾勇 詹明生 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期318-323,共6页
The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique re... The recently developed magic-intensity trapping technique of neutral atoms efficiently mitigates the detrimental effect of light shifts on atomic qubits and substantially enhances the coherence time. This technique relies on applying a bias magnetic field precisely parallel to the wave vector of a circularly polarized trapping laser field. However, due to the presence of the vector light shift experienced by the trapped atoms, it is challenging to precisely define a parallel magnetic field, especially at a low bias magnetic field strength, for the magic-intensity trapping of85Rb qubits. In this work, we present a method to calibrate the angle between the bias magnetic field and the trapping laser field with the compensating magnetic fields in the other two directions orthogonal to the bias magnetic field direction. Experimentally, with a constantdepth trap and a fixed bias magnetic field, we measure the respective resonant frequencies of the atomic qubits in a linearly polarized trap and a circularly polarized one via the conventional microwave Rabi spectra with different compensating magnetic fields and obtain the corresponding total magnetic fields via the respective resonant frequencies using the Breit–Rabi formula. With known total magnetic fields, the angle is a function of the other two compensating magnetic fields.Finally, the projection value of the angle on either of the directions orthogonal to the bias magnetic field direction can be reduced to 0(4)° by applying specific compensating magnetic fields. The measurement error is mainly attributed to the fluctuation of atomic temperature. Moreover, it also demonstrates that, even for a small angle, the effect is strong enough to cause large decoherence of Rabi oscillation in a magic-intensity trap. Although the compensation method demonstrated here is explored for the magic-intensity trapping technique, it can be applied to a variety of similar precision measurements with trapped neutral atoms. 展开更多
关键词 quantization axis trapping laser ANGLE compensating magnetic fields
原文传递
Network-Assisted Full-Duplex Cell-Free mmWave Massive MIMO Systems with DAC Quantization and Fronthaul Compression
12
作者 Li Jiamin Fan Qingrui +4 位作者 Zhang Yu Zhu Pengcheng Wang Dongming Wu Hao You Xiaohu 《China Communications》 SCIE CSCD 2024年第11期75-87,共13页
In this paper,we investigate networkassisted full-duplex(NAFD)cell-free millimeter-wave(mmWave)massive multiple-input multiple-output(MIMO)systems with digital-to-analog converter(DAC)quantization and fronthaul compre... In this paper,we investigate networkassisted full-duplex(NAFD)cell-free millimeter-wave(mmWave)massive multiple-input multiple-output(MIMO)systems with digital-to-analog converter(DAC)quantization and fronthaul compression.We propose to maximize the weighted uplink and downlink sum rate by jointly optimizing the power allocation of both the transmitting remote antenna units(T-RAUs)and uplink users and the variances of the downlink and uplink fronthaul compression noises.To deal with this challenging problem,we further apply a successive convex approximation(SCA)method to handle the non-convex bidirectional limited-capacity fronthaul constraints.The simulation results verify the convergence of the proposed SCA-based algorithm and analyze the impact of fronthaul capacity and DAC quantization on the spectral efficiency of the NAFD cell-free mmWave massive MIMO systems.Moreover,some insightful conclusions are obtained through the comparisons of spectral efficiency,which shows that NAFD achieves better performance gains than cotime co-frequency full-duplex cloud radio access network(CCFD C-RAN)in the cases of practical limited-resolution DACs.Specifically,their performance gaps with 8-bit DAC quantization are larger than that with1-bit DAC quantization,which attains a 5.5-fold improvement. 展开更多
关键词 cell-free massive MIMO DAC quantization millimeter-wave network-assisted full-duplex
在线阅读 下载PDF
A Novel Quantization and Model Compression Approach for Hardware Accelerators in Edge Computing
13
作者 Fangzhou He Ke Ding +3 位作者 DingjiangYan Jie Li Jiajun Wang Mingzhe Chen 《Computers, Materials & Continua》 SCIE EI 2024年第8期3021-3045,共25页
Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-ability on edge computing devices of the Internet of Things(IoT).While Power-of-Two(PoT)quantization is pro... Massive computational complexity and memory requirement of artificial intelligence models impede their deploy-ability on edge computing devices of the Internet of Things(IoT).While Power-of-Two(PoT)quantization is pro-posed to improve the efficiency for edge inference of Deep Neural Networks(DNNs),existing PoT schemes require a huge amount of bit-wise manipulation and have large memory overhead,and their efficiency is bounded by the bottleneck of computation latency and memory footprint.To tackle this challenge,we present an efficient inference approach on the basis of PoT quantization and model compression.An integer-only scalar PoT quantization(IOS-PoT)is designed jointly with a distribution loss regularizer,wherein the regularizer minimizes quantization errors and training disturbances.Additionally,two-stage model compression is developed to effectively reduce memory requirement,and alleviate bandwidth usage in communications of networked heterogenous learning systems.The product look-up table(P-LUT)inference scheme is leveraged to replace bit-shifting with only indexing and addition operations for achieving low-latency computation and implementing efficient edge accelerators.Finally,comprehensive experiments on Residual Networks(ResNets)and efficient architectures with Canadian Institute for Advanced Research(CIFAR),ImageNet,and Real-world Affective Faces Database(RAF-DB)datasets,indicate that our approach achieves 2×∼10×improvement in the reduction of both weight size and computation cost in comparison to state-of-the-art methods.A P-LUT accelerator prototype is implemented on the Xilinx KV260 Field Programmable Gate Array(FPGA)platform for accelerating convolution operations,with performance results showing that P-LUT reduces memory footprint by 1.45×,achieves more than 3×power efficiency and 2×resource efficiency,compared to the conventional bit-shifting scheme. 展开更多
关键词 Edge computing model compression hardware accelerator power-of-two quantization
在线阅读 下载PDF
Image Steganography by Pixel-Value Differencing Using General Quantization Ranges
14
作者 Da-Chun Wu Zong-Nan Shih 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期353-383,共31页
A new steganographic method by pixel-value differencing(PVD)using general quantization ranges of pixel pairs’difference values is proposed.The objective of this method is to provide a data embedding technique with a ... A new steganographic method by pixel-value differencing(PVD)using general quantization ranges of pixel pairs’difference values is proposed.The objective of this method is to provide a data embedding technique with a range table with range widths not limited to powers of 2,extending PVD-based methods to enhance their flexibility and data-embedding rates without changing their capabilities to resist security attacks.Specifically,the conventional PVD technique partitions a grayscale image into 1×2 non-overlapping blocks.The entire range[0,255]of all possible absolute values of the pixel pairs’grayscale differences in the blocks is divided into multiple quantization ranges.The width of each quantization range is a power of two to facilitate the direct embedding of the bit information with high embedding rates.Without using power-of-two range widths,the embedding rates can drop using conventional embedding techniques.In contrast,the proposed method uses general quantization range widths,and a multiple-based number conversion mechanism is employed skillfully to implement the use of nonpower-of-two range widths,with each pixel pair being employed to embed a digit in the multiple-based number.All the message bits are converted into a big multiple-based number whose digits can be embedded into the pixel pairs with a higher embedding rate.Good experimental results showed the feasibility of the proposed method and its resistance to security attacks.In addition,implementation examples are provided,where the proposed method adopts non-power-of-two range widths and employsmultiple-based number conversion to expand the data-hiding and steganalysis-resisting capabilities of other PVD methods. 展开更多
关键词 STEGANOGRAPHY pixel-value differencing multiple-based number conversion general quantization range
在线阅读 下载PDF
Landau quantization effects on damping Kawahara solitons in electron–positron–ion plasma in rotating ionized medium
15
作者 E I El-Awady S Hussain N Akhtar 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第10期141-150,共10页
For the dynamics of three-dimensional electron–positron–ion plasmas,a fluid quantum hydrodynamic model is proposed by considering Landau quantization effects in dense plasma.Ion–neutral collisions in the presence o... For the dynamics of three-dimensional electron–positron–ion plasmas,a fluid quantum hydrodynamic model is proposed by considering Landau quantization effects in dense plasma.Ion–neutral collisions in the presence of the Coriolis force are also considered.The application of the reductive perturbation technique produces a wave evolution equation represented by a damped Korteweg–de Vries equation.This equation,however,is insufficient for describing waves in our system at very low dispersion coefficients.As a result,we considered the highest-order perturbation,which resulted in the damped Kawahara equation.The effects of the magnetic field,Landau quantization,the ratio of positron density to electron density,the ratio of positron density to ion density,and the direction cosine on linear dispersion laws as well as soliton and conoidal solutions of the damped Kawahara equation are explored.The understanding from this research can contribute to the broader field of astrophysics and aid in the interpretation of observational data from white dwarfs. 展开更多
关键词 Kawahara equation solitary and cnoidal waves quantum plasma magnetoplasmas Landau quantization Coriolis force
原文传递
Learning Vector Quantization-Based Fuzzy Rules Oversampling Method
16
作者 Jiqiang Chen Ranran Han +1 位作者 Dongqing Zhang Litao Ma 《Computers, Materials & Continua》 SCIE EI 2024年第6期5067-5082,共16页
Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship ... Imbalanced datasets are common in practical applications,and oversampling methods using fuzzy rules have been shown to enhance the classification performance of imbalanced data by taking into account the relationship between data attributes.However,the creation of fuzzy rules typically depends on expert knowledge,which may not fully leverage the label information in training data and may be subjective.To address this issue,a novel fuzzy rule oversampling approach is developed based on the learning vector quantization(LVQ)algorithm.In this method,the label information of the training data is utilized to determine the antecedent part of If-Then fuzzy rules by dynamically dividing attribute intervals using LVQ.Subsequently,fuzzy rules are generated and adjusted to calculate rule weights.The number of new samples to be synthesized for each rule is then computed,and samples from the minority class are synthesized based on the newly generated fuzzy rules.This results in the establishment of a fuzzy rule oversampling method based on LVQ.To evaluate the effectiveness of this method,comparative experiments are conducted on 12 publicly available imbalance datasets with five other sampling techniques in combination with the support function machine.The experimental results demonstrate that the proposed method can significantly enhance the classification algorithm across seven performance indicators,including a boost of 2.15%to 12.34%in Accuracy,6.11%to 27.06%in G-mean,and 4.69%to 18.78%in AUC.These show that the proposed method is capable of more efficiently improving the classification performance of imbalanced data. 展开更多
关键词 OVERSAMPLING fuzzy rules learning vector quantization imbalanced data support function machine
在线阅读 下载PDF
Hierarchical Controller Synthesis Under Linear Temporal Logic Specifications Using Dynamic Quantization
17
作者 Wei Ren Zhuo-Rui Pan +1 位作者 Weiguo Xia Xi-Ming Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2082-2098,共17页
Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement ... Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement the dynamic quantization technique to propose a novel hierarchical control strategy for nonlinear control systems under LTL specifications.Based on the regions of interest involved in the LTL formula,an accepting path is derived first to provide a high-level solution for the controller synthesis problem.Second,we develop a dynamic quantization based approach to verify the realization of the accepting path.The realization verification results in the necessity of the controller design and a sequence of quantization regions for the controller design.Third,the techniques of dynamic quantization and abstraction-based control are combined together to establish the local-to-global control strategy.Both abstraction construction and controller design are local and dynamic,thereby resulting in the potential reduction of the computational complexity.Since each quantization region can be considered locally and individually,the proposed hierarchical mechanism is more efficient and can solve much larger problems than many existing methods.Finally,the proposed control strategy is illustrated via two examples from the path planning and tracking problems of mobile robots. 展开更多
关键词 Abstraction-based control design dynamic quantization formal methods linear temporal logic(LTL)
在线阅读 下载PDF
Rate distortion optimization for adaptive gradient quantization in federated learning
18
作者 Guojun Chen Kaixuan Xie +4 位作者 Wenqiang Luo Yinfei Xu Lun Xin Tiecheng Song Jing Hu 《Digital Communications and Networks》 CSCD 2024年第6期1813-1825,共13页
Federated Learning(FL)is an emerging machine learning framework designed to preserve privacy.However,the continuous updating of model parameters over uplink channels with limited throughput leads to a huge communicati... Federated Learning(FL)is an emerging machine learning framework designed to preserve privacy.However,the continuous updating of model parameters over uplink channels with limited throughput leads to a huge communication overload,which is a major challenge for FL.To address this issue,we propose an adaptive gradient quantization approach that enhances communication efficiency.Aiming to minimize the total communication costs,we consider both the correlation of gradients between local clients and the correlation of gradients between communication rounds,namely,in the time and space dimensions.The compression strategy is based on rate distortion theory,which allows us to find an optimal quantization strategy for the gradients.To further reduce the computational complexity,we introduce the Kalman filter into the proposed approach.Finally,numerical results demonstrate the effectiveness and robustness of the proposed rate-distortion optimization adaptive gradient quantization approach in significantly reducing the communication costs when compared to other quantization methods. 展开更多
关键词 Federated learning Communication efficiency Adaptive quantization Rate distortion
在线阅读 下载PDF
Does There Exist the Applicability Limit of PDE to Describe Physical Phenomena?—A Personal Survey of Quantization, QED, Turbulence
19
作者 Atsushi Inoue 《World Journal of Mechanics》 2024年第6期97-142,共46页
What does it mean to study PDE (Partial Differential Equation)? How and what to do “to claim proudly that I’m studying a certain PDE”? Newton mechanic uses mainly ODE (Ordinary Differential Equation) and describes ... What does it mean to study PDE (Partial Differential Equation)? How and what to do “to claim proudly that I’m studying a certain PDE”? Newton mechanic uses mainly ODE (Ordinary Differential Equation) and describes nicely movements of Sun, Moon and Earth etc. Now, so-called quantum phenomenum is described by, say Schrödinger equation, PDE which explains both wave and particle characters after quantization of ODE. The coupled Maxwell-Dirac equation is also “quantized” and QED (Quantum Electro-Dynamics) theory is invented by physicists. Though it is said this QED gives very good coincidence between theoretical1 and experimental observed quantities, but what is the equation corresponding to QED? Or, is it possible to describe QED by “equation” in naive sense? 展开更多
关键词 SUPERSPACE Grassmann Variables Hamilton-Jacobi Equation quantization
在线阅读 下载PDF
Quantization of Action for Elementary Particles and the Principle of Least Action
20
作者 Shuming Wen 《Journal of Modern Physics》 2024年第9期1430-1447,共18页
The uncertainty principle is a fundamental principle of quantum mechanics, but its exact mathematical expression cannot obtain correct results when used to solve theoretical problems such as the energy levels of hydro... The uncertainty principle is a fundamental principle of quantum mechanics, but its exact mathematical expression cannot obtain correct results when used to solve theoretical problems such as the energy levels of hydrogen atoms, one-dimensional deep potential wells, one-dimensional harmonic oscillators, and double-slit experiments. Even after approximate treatment, the results obtained are not completely consistent with those obtained by solving Schrödinger’s equation. This indicates that further research on the uncertainty principle is necessary. Therefore, using the de Broglie matter wave hypothesis, we quantize the action of an elementary particle in natural coordinates and obtain the quantization condition and a new deterministic relation. Using this quantization condition, we obtain the energy level formulas of an elementary particle in different conditions in a classical way that is completely consistent with the results obtained by solving Schrödinger’s equation. A new physical interpretation is given for the particle eigenfunction independence of probability for an elementary particle: an elementary particle is in a particle state at the space-time point where the action is quantized, and in a wave state in the rest of the space-time region. The space-time points of particle nature and the wave regions of particle motion constitute the continuous trajectory of particle motion. When an elementary particle is in a particle state, it is localized, whereas in the wave state region, it is nonlocalized. 展开更多
关键词 Elementary Particle quantization of Action Deterministic Relation Inherent State Nonprobabilistic Interpretation Localization Region Nonlocalization Region
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部