Quantization noise caused by analog-to-digital converter(ADC)gives rise to the reliability performance degradation of communication systems.In this paper,a quantized non-Hermitian symmetry(NHS)orthogonal frequency-div...Quantization noise caused by analog-to-digital converter(ADC)gives rise to the reliability performance degradation of communication systems.In this paper,a quantized non-Hermitian symmetry(NHS)orthogonal frequency-division multiplexing-based visible light communication(OFDM-VLC)system is presented.In order to analyze the effect of the resolution of ADC on NHS OFDM-VLC,a quantized mathematical model of NHS OFDM-VLC is established.Based on the proposed quantized model,a closed-form bit error rate(BER)expression is derived.The theoretical analysis and simulation results both confirm the effectiveness of the obtained BER formula in high-resolution ADC.In addition,channel coding is helpful in compensating for the BER performance loss due to the utilization of lower resolution ADC.展开更多
The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classificati...The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classification.However,BERT’s size and computational demands limit its practicality,especially in resource-constrained settings.This research compresses the BERT base model for Bengali emotion classification through knowledge distillation(KD),pruning,and quantization techniques.Despite Bengali being the sixth most spoken language globally,NLP research in this area is limited.Our approach addresses this gap by creating an efficient BERT-based model for Bengali text.We have explored 20 combinations for KD,quantization,and pruning,resulting in improved speedup,fewer parameters,and reduced memory size.Our best results demonstrate significant improvements in both speed and efficiency.For instance,in the case of mBERT,we achieved a 3.87×speedup and 4×compression ratio with a combination of Distil+Prune+Quant that reduced parameters from 178 to 46 M,while the memory size decreased from 711 to 178 MB.These results offer scalable solutions for NLP tasks in various languages and advance the field of model compression,making these models suitable for real-world applications in resource-limited environments.展开更多
The Internet of Things(IoT)technology provides data acquisition,transmission,and analysis to control rehabilitation robots,encompassing sensor data from the robots as well as lidar signals for trajectory planning(desi...The Internet of Things(IoT)technology provides data acquisition,transmission,and analysis to control rehabilitation robots,encompassing sensor data from the robots as well as lidar signals for trajectory planning(desired trajectory).In IoT rehabilitation robot systems,managing nonvanishing uncertainties and input quantization is crucial for precise and reliable control performance.These challenges can cause instability and reduced effectiveness,particularly in adaptive networked control.This paper investigates networked control with guaranteed performance for IoT rehabilitation robots under nonvanishing uncertainties and input quantization.First,input quantization is managed via a quantization-aware control design,ensur stability and minimizing tracking errors,even with discrete control inputs,to avoid chattering.Second,the method handles nonvanishing uncertainties by adjusting control parameters via real-time neural network adaptation,maintaining consistent performance despite persistent disturbances.Third,the control scheme guarantees the desired tracking performance within a specified time,with all signals in the closed-loop system remaining uniformly bounded,offering a robust,reliable solution for IoT rehabilitation robot control.The simulation verifies the benefits and efficacy of the proposed control strategy.展开更多
This paper proposes a novel method for the automatic diagnosis of keratitis using feature vector quantization and self-attention mechanisms(ADK_FVQSAM).First,high-level features are extracted using the DenseNet121 bac...This paper proposes a novel method for the automatic diagnosis of keratitis using feature vector quantization and self-attention mechanisms(ADK_FVQSAM).First,high-level features are extracted using the DenseNet121 backbone network,followed by adaptive average pooling to scale the features to a fixed length.Subsequently,product quantization with residuals(PQR)is applied to convert continuous feature vectors into discrete features representations,preserving essential information insensitive to image quality variations.The quantized and original features are concatenated and fed into a self-attention mechanism to capture keratitis-related features.Finally,these enhanced features are classified through a fully connected layer.Experiments on clinical low-quality(LQ)images show that ADK_FVQSAM achieves accuracies of 87.7%,81.9%,and 89.3% for keratitis,other corneal abnormalities,and normal corneas,respectively.Compared to DenseNet121,Swin transformer,and InceptionResNet,ADK_FVQSAM improves average accuracy by 3.1%,11.3%,and 15.3%,respectively.These results demonstrate that ADK_FVQSAM significantly enhances the recognition performance of keratitis based on LQ slit-lamp images,offering a practical approach for clinical application.展开更多
基金supported by the National Natural Science Foundation of China(No.62201508)the Zhejiang Provincial Natural Science Foundation of China(Nos.LZ21F010001 and LQ23F010004)the State Key Laboratory of Millimeter Waves of Southeast University,China(No.K202212).
文摘Quantization noise caused by analog-to-digital converter(ADC)gives rise to the reliability performance degradation of communication systems.In this paper,a quantized non-Hermitian symmetry(NHS)orthogonal frequency-division multiplexing-based visible light communication(OFDM-VLC)system is presented.In order to analyze the effect of the resolution of ADC on NHS OFDM-VLC,a quantized mathematical model of NHS OFDM-VLC is established.Based on the proposed quantized model,a closed-form bit error rate(BER)expression is derived.The theoretical analysis and simulation results both confirm the effectiveness of the obtained BER formula in high-resolution ADC.In addition,channel coding is helpful in compensating for the BER performance loss due to the utilization of lower resolution ADC.
文摘The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classification.However,BERT’s size and computational demands limit its practicality,especially in resource-constrained settings.This research compresses the BERT base model for Bengali emotion classification through knowledge distillation(KD),pruning,and quantization techniques.Despite Bengali being the sixth most spoken language globally,NLP research in this area is limited.Our approach addresses this gap by creating an efficient BERT-based model for Bengali text.We have explored 20 combinations for KD,quantization,and pruning,resulting in improved speedup,fewer parameters,and reduced memory size.Our best results demonstrate significant improvements in both speed and efficiency.For instance,in the case of mBERT,we achieved a 3.87×speedup and 4×compression ratio with a combination of Distil+Prune+Quant that reduced parameters from 178 to 46 M,while the memory size decreased from 711 to 178 MB.These results offer scalable solutions for NLP tasks in various languages and advance the field of model compression,making these models suitable for real-world applications in resource-limited environments.
基金supported in part by the National Natural Science Foundation of China under Grant 62302475in part by the Research Funds of Centre for Leading Medicine and Advanced Technologies of IHM under Grant 2023IHM01081 and 2023IHM01085+1 种基金in part by the Hefei Municipal Natural Science Foundation under Grant 202328partly by the Anhui Science and Technology Innovation Tackling Plan Project under Grant 202423k09020044。
文摘The Internet of Things(IoT)technology provides data acquisition,transmission,and analysis to control rehabilitation robots,encompassing sensor data from the robots as well as lidar signals for trajectory planning(desired trajectory).In IoT rehabilitation robot systems,managing nonvanishing uncertainties and input quantization is crucial for precise and reliable control performance.These challenges can cause instability and reduced effectiveness,particularly in adaptive networked control.This paper investigates networked control with guaranteed performance for IoT rehabilitation robots under nonvanishing uncertainties and input quantization.First,input quantization is managed via a quantization-aware control design,ensur stability and minimizing tracking errors,even with discrete control inputs,to avoid chattering.Second,the method handles nonvanishing uncertainties by adjusting control parameters via real-time neural network adaptation,maintaining consistent performance despite persistent disturbances.Third,the control scheme guarantees the desired tracking performance within a specified time,with all signals in the closed-loop system remaining uniformly bounded,offering a robust,reliable solution for IoT rehabilitation robot control.The simulation verifies the benefits and efficacy of the proposed control strategy.
基金supported by the National Natural Science Foundation of China(Nos.62276210,82201148 and 62376215)the Key Research and Development Project of Shaanxi Province(No.2025CY-YBXM-044)+3 种基金the Natural Science Foundation of Zhejiang Province(No.LQ22H120002)the Medical Health Science and Technology Project of Zhejiang Province(Nos.2022RC069 and 2023KY1140)the Natural Science Foundation of Ningbo(No.2023J390)the Ningbo Top Medical and Health Research Program(No.2023030716).
文摘This paper proposes a novel method for the automatic diagnosis of keratitis using feature vector quantization and self-attention mechanisms(ADK_FVQSAM).First,high-level features are extracted using the DenseNet121 backbone network,followed by adaptive average pooling to scale the features to a fixed length.Subsequently,product quantization with residuals(PQR)is applied to convert continuous feature vectors into discrete features representations,preserving essential information insensitive to image quality variations.The quantized and original features are concatenated and fed into a self-attention mechanism to capture keratitis-related features.Finally,these enhanced features are classified through a fully connected layer.Experiments on clinical low-quality(LQ)images show that ADK_FVQSAM achieves accuracies of 87.7%,81.9%,and 89.3% for keratitis,other corneal abnormalities,and normal corneas,respectively.Compared to DenseNet121,Swin transformer,and InceptionResNet,ADK_FVQSAM improves average accuracy by 3.1%,11.3%,and 15.3%,respectively.These results demonstrate that ADK_FVQSAM significantly enhances the recognition performance of keratitis based on LQ slit-lamp images,offering a practical approach for clinical application.