A two-dimensional rectangular solenoid transmitting coil is proposed to address the problem that the three-dimensional receiving coil occupies excessive space inside the capsule robot.The transmitting coil consists of...A two-dimensional rectangular solenoid transmitting coil is proposed to address the problem that the three-dimensional receiving coil occupies excessive space inside the capsule robot.The transmitting coil consists of two pairs of rectangular solenoid coils distributed radially along the human body.By changing the direction of current flow,it can generate a two-dimensional magnetic field covering the whole central plane.Firstly,the working mechanism of the wireless power transfer system is introduced,and then the spatial electromagnetic field generated by the transmitting coil is analyzed through both mathematical calculations and finite element simulations.Finally,an experimental platform is built to determine the optimal resonant frequency of the system and validate its feasibility based on the power transfer efficiency and the receiving power.The experimental results demonstrate that when the receiving coil is located at the center of the coil pair,the receiving power is 1416 mW and the power transfer efficiency is 3.96%.Additionally,when the receiving coil operates in the central plane,it can receive sufficient energy regardless of the orientation.展开更多
Sexually transmitted infections (STIs) represent a public health problem due to their high prevalence worldwide and the emergence of multidrug resistance of responsible microorganisms. Medical laboratory diagnosis of ...Sexually transmitted infections (STIs) represent a public health problem due to their high prevalence worldwide and the emergence of multidrug resistance of responsible microorganisms. Medical laboratory diagnosis of sexually transmitted genital infections by traditional methods as culture remains extremely delicate, difficult or impossible (to find extremely fragile organisms that can be cultured). Thus, molecular techniques constitute an alternative to improve accurate diagnostic, personalized patient treatment, and public health. A total of 83 clinical samples including urethral discharge and urine samples from individual patients with symptoms of urethritis received were analyzed using traditional methods and a commercial real-time PCR (qPCR) method. Out of 83 urethritis patients, n = 55 (66.26%) were positive for at least one of the STI pathogens detected by qPCR. qPCR assay was more sensitive (50/83, positive cases) compared to culture (15/83, positive cases) and light microscopy (28/83, positive cases). The most prevalent NTD pathogen in the suspected patients was N. gonorrhoeae with 60.24% (50/83) based on real-time PCR diagnosis. Among the positive cases of STI pathogens, Neisseria gonorrhoeae had the highest frequency 49/55 (89.01%) followed by low frequencies of Trichomonas vaginalis 4/55 (7.27%) and Chlamydia trachomatis 1/55 (1.82%). This highlights the high prevalence of N. gonorrhoeae infection in male urethritis patients and a very important misdiagnosis using traditional routine methods in Burkina Faso by medical laboratories. Thus, this situation may negatively impact patients’ personalized treatment and care and public health with the possible rapid emergence of multidrug-resistant strains. This study also highlights the urgent need to optimize culture for the diagnosis of NTD pathogens in Burkina Faso and the usefulness and the need for the introduction of molecular diagnostic methods in routine diagnosis for the detection of NTD pathogens in the medical laboratories in Burkina Faso.展开更多
This study primarily aimed to investigate the prevalence of human papillomavirus(HPV)and other common pathogens of sexually transmitted infections(STIs)in spermatozoa of infertile men and their effects on semen parame...This study primarily aimed to investigate the prevalence of human papillomavirus(HPV)and other common pathogens of sexually transmitted infections(STIs)in spermatozoa of infertile men and their effects on semen parameters.These pathogens included Ureaplasma urealyticum,Ureaplasma parvum,Chlamydia trachomatis,Mycoplasma genitalium,herpes simplex virus 2,Neisseria gonorrhoeae,Enterococcus faecalis,Streptococcus agalactiae,Pseudomonas aeruginosa,and Staphylococcus aureus.A total of 1951 men of infertile couples were recruited between 23 March 2023,and 17 May 2023,at the Department of Reproductive Medicine of The First People’s Hospital of Yunnan Province(Kunming,China).Multiplex polymerase chain reaction and capillary electrophoresis were used for HPV genotyping.Polymerase chain reaction and electrophoresis were also used to detect the presence of other STIs.The overall prevalence of HPV infection was 12.4%.The top five prevalent HPV subtypes were types 56,52,43,16,and 53 among those tested positive for HPV.Other common infections with high prevalence rates were Ureaplasma urealyticum(28.3%),Ureaplasma parvum(20.4%),and Enterococcus faecalis(9.5%).The prevalence rates of HPV coinfection with Ureaplasma urealyticum,Ureaplasma parvum,Chlamydia trachomatis,Mycoplasma genitalium,herpes simplex virus 2,Neisseria gonorrhoeae,Enterococcus faecalis,Streptococcus agalactiae,and Staphylococcus aureus were 24.8%,25.4%,10.6%,6.4%,2.4%,7.9%,5.9%,0.9%,and 1.3%,respectively.The semen volume and total sperm count were greatly decreased by HPV infection alone.Coinfection with HPV and Ureaplasma urealyticum significantly reduced sperm motility and viability.Our study shows that coinfection with STIs is highly prevalent in the semen of infertile men and that coinfection with pathogens can seriously affect semen parameters,emphasizing the necessity of semen screening for STIs.展开更多
The finite element artificial transmitting boundary method is employed here to treat the near field scattering of a cylindrical wave from an irregular cylinder. A comparison is made between this method and the analy...The finite element artificial transmitting boundary method is employed here to treat the near field scattering of a cylindrical wave from an irregular cylinder. A comparison is made between this method and the analytical one. And then examples are given to demonstrate the solution of several problems of the irregular object scattering. The method can not only produce clear physical pictures, but can efficiently handle many complicated scattering problems.展开更多
To obtain good trade-offs between complexity and performance onpeak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM)using partial transmitting sequence (PTS) schemes, a trel...To obtain good trade-offs between complexity and performance onpeak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM)using partial transmitting sequence (PTS) schemes, a trellis structure based PTS factor searchmethod is proposed. The trellis search is with a variant constraint length L_C, 1 ≤ L_C ≤ V-1,where V is the number of PTS subblocks. The method is to decide a PTS factor by searching all thepossible paths obtained by varying L_C consecutive factors. The trellis search can be viewed as ageneral PTS factor search model. If L_C = V-1, it is a full search, and if L_C = 1, it is aniterative search. Using different constraint lengths, trellis factor search PTS exhibits differentPAPR reduction performances. A larger L_C results in a better performance and L_C = V-1 results inthe optimum. However, a larger L_C requires more computation. This helps to choose a good trade-offbetween complexity and performance.展开更多
We investigated image processing algorithms of the original infrared glass flaw image. Using the Laplacian edge enhancement following LSD (Line Segment Detector) algorithm, we can get a good flaw image very consiste...We investigated image processing algorithms of the original infrared glass flaw image. Using the Laplacian edge enhancement following LSD (Line Segment Detector) algorithm, we can get a good flaw image very consistent with the original one. This study is very helpful to further enhance the infrared glass flaw inspection technique.展开更多
Radar target probing and measurement are challenging tasks for Radio Frequency Simulation(RFS) with pulse radar signal. Due to the long-time duration of pulse radar signal and the limited space of anechoic chamber, ...Radar target probing and measurement are challenging tasks for Radio Frequency Simulation(RFS) with pulse radar signal. Due to the long-time duration of pulse radar signal and the limited space of anechoic chamber, the reflected signal returns before pulse radar signal is fully transmitted in RFS. As a consequence, the transmitted and reflected signals are coupled at the receiver. To handle this problem, the Interrupted Transmitting and Receiving(ITR) experiment system is constructed in this paper by dividing the pulse radar signal into sub-pulses. The target echo can be obtained by transmitting and receiving the sub-pulses intermittently. Furthermore, the principles of ITR are discussed and the target probing experiments are performed with the ITR system. It is demonstrated that the ITR system can overcome the coupling between the reflected and transmitted signals. Based on the target probing results, the performance of pulse radar target probing and measurement can be verified in RFS with the ITR system.展开更多
Based on the modified scale boundary finite element method and continued fraction solution,a high-order doubly asymptotic transmitting boundary(DATB)is derived and extended to the simulation of vector wave propagation...Based on the modified scale boundary finite element method and continued fraction solution,a high-order doubly asymptotic transmitting boundary(DATB)is derived and extended to the simulation of vector wave propagation in complex layered soils.The high-order DATB converges rapidly to the exact solution throughout the entire frequency range and its formulation is local in the time domain,possessing high accuracy and good efficiency.Combining with finite element method,a coupled model is constructed for time-domain analysis of underground station-layered soil interaction.The coupled model is divided into the near and far field by the truncated boundary,of which the near field is modelled by FEM while the far field is modelled by the high-order DATB.The coupled model is implemented in an open source finite element software,OpenSees,in which the DATB is employed as a super element.Numerical examples demonstrate that results of the coupled model are stable,accurate and efficient compared with those of the extended mesh model and the viscous-spring boundary model.Besides,it has also shown the fitness for long-time seismic response analysis of underground station-layered soil interaction.Therefore,it is believed that the coupled model could provide a new approach for seismic analysis of underground station-layered soil interaction and could be further developed for engineering.展开更多
Local coupling instability will occur when the numerical scheme of absorbing boundary condition and that of the field wave equation allow energies to spontaneously enter into the computational domain. That is, the two...Local coupling instability will occur when the numerical scheme of absorbing boundary condition and that of the field wave equation allow energies to spontaneously enter into the computational domain. That is, the two schemes support common wave solutions with group velocity pointed into the computation domain. The key to eliminate local coupling instability is to avoid such wave solutions. For lumped-mass finite element simulation of P-SV wave motion in a 2D waveguide, an approach for stable implementation of high order multi-transmitting formula is provided. With a uniform rectangular mesh, it is proven and validated that high-freqaency local coupling instability can be eliminated by setting the ratio of the element size equal to or greater than x/2 times the ratio of the P wave velocity to the S wave velocity. These results can be valuable for dealing instability problems induced by other absorbing boundary conditions.展开更多
The transmitting properties of acoustic emission(AE) signal is investigated in order to provide experimental basis for application of AE technique. In the paper, the influences of the geometric shape and material prop...The transmitting properties of acoustic emission(AE) signal is investigated in order to provide experimental basis for application of AE technique. In the paper, the influences of the geometric shape and material properties of the mediums and the bearing type on AE transmission are analyzed for providing the theoretic foundation for selecting the transmission route of AE signal and the fixing location of the AE sensor reasonably. According to the transmitting properties of AE, an apparatus of detecting AE signal for the tool breakage monitoring system has been set up. Its application results show that it is of benefit to improving the sensitivity of the tool breakage monitoring system.展开更多
This paper summarizes the basic situation of the Binchuan Transmitting Seismic Station and the geophysical observations of the area where it is located,with a focus on the constitution of the observation system of the...This paper summarizes the basic situation of the Binchuan Transmitting Seismic Station and the geophysical observations of the area where it is located,with a focus on the constitution of the observation system of the transmitting seismic station,the excitation characteristics and propagation distance of signals excited by the airgun source in the reservoir and well. The paper also summarizes and discusses on the results of the observations and problems encountered since the Transmitting Seismic Station was built.Finally,this paper proposes the main research to be carried out on the basis of the project aims.展开更多
The influence derived from atmosphere transmitting of radar wave, in the application of high-resolution airborne Synthetic Aperture Radar (SAR) stereo positioning, may produce some phase errors, and eventually be intr...The influence derived from atmosphere transmitting of radar wave, in the application of high-resolution airborne Synthetic Aperture Radar (SAR) stereo positioning, may produce some phase errors, and eventually be introduced into positioning model. This paper described the principle of airborne SAR stereo positioning and the error sources of stereo positioning accuracy that arose from atmosphere transmitting, established a corresponding assess- ment model of atmosphere transmitting influence, and testified the model and the assessment principle taking the 1-m resolution airborne SAR images of Zigong City, Sichuan Province in China, as the test dataset. The test result has proved that the assessment model is reliable and reasonable. And, it has shown that the phase error arisen from time delay is the main error source during the atmosphere transmitting, which has much more influences on cross-track di- rection and introduces a stereo positioning error of about eight meters, but less on the along-track direction.展开更多
Common clay, Kaolin and Bentonite were used as additives to prepare water-transmitting coating fiber, respectively, and the water-transmitting characteristic of coating fiber was studied. Different water-transmitting ...Common clay, Kaolin and Bentonite were used as additives to prepare water-transmitting coating fiber, respectively, and the water-transmitting characteristic of coating fiber was studied. Different water-transmitting coating fibers were prepared by coating fiber using coating material with different mass proportions of additives to adhesive. And the coating materials were made from three kinds of inorganic clays as additives respectively and polyvinyl alcohol (PVA) as adhesive. Furthermore, the surface morphology and water-transmitting capacity of coating fiber were studied by SEM, Perkin Elmer Diamond SII thermal multi-analyzer and instrument for quick measurement moisture M30. The experimental results indicate that water-transmitting coating fibers made from three kinds of clays all have water-transmitting capacity. The surface of water-transmitting coating fiber prepared by common clay T is continuous and compact, and the water-transmitting effect is better than coating fibers made from other clays.展开更多
An accurate numerical simulation for wave equations is essential for understanding of wave propagation in the earth's interior as well as full waveform inversion and reverse time migration. However, due to computa...An accurate numerical simulation for wave equations is essential for understanding of wave propagation in the earth's interior as well as full waveform inversion and reverse time migration. However, due to computational cost and hardware capability limitations, numerical simulations are often performed within a finite domain. Thus, an adequate absorbing boundary condition (ABC) is indispensable for obtaining accurate numerical simulation results. In this study, we develop a hybrid ABC based on a transmitting boundary, which is referred to as THABC, to eliminate artificial boundary reflections in 3D second-order fractional viscoacoustic numerical simulations. Furthermore, we propose an adaptive weighted coefficient to reconcile the transmitting and viscoacoustic wavefields in THABC. Through several numerical examples, we determine that the proposed THABC approach is characterized by the following benefits. First, with the same number of absorbing layers, THABC exhibits a better ability in eliminating boundary reflection than traditional ABC schemes. Second, THABC is more effective in computation, since it only requires the wavefields at the current and last time steps to solve the transmitting formula within the absorbing layers. Benefiting from a simple but effective combination between the transmitting equation and the second-order wave equation, our scheme performs well in the 3D fractional Laplacian viscoacoustic numerical simulation.展开更多
In this paper, we conduct research on the novel mode of plane graphic design from the core angle of the primary visual language transmitting. Relationship between nationality and cosmopolitan processing in graphic des...In this paper, we conduct research on the novel mode of plane graphic design from the core angle of the primary visual language transmitting. Relationship between nationality and cosmopolitan processing in graphic design in the design of image symbol expression and significance of the symbol on the one hand require symbolic form must have enough openness and the cognitive function on the other hand with semiotics method can let the designer to extract the most representative and symbolic notation style to carry on the design expression. As a non- verbal symbols, from the perspective of the view, the design image is no national boundaries, but the human form to beauty and should express the symbolism of cognition is the same. In the form of the ethnic groups of the cosmopolitan codes are for identification of Chinese contemporary design possible effective methods. Our research proposes novel perspective of the design which is meaningful.展开更多
In the process of promoting social development, science and technology undoubtedly played a huge role, bringing earth-shaking changes to the improvement of China's economic level and social modernization. The wide...In the process of promoting social development, science and technology undoubtedly played a huge role, bringing earth-shaking changes to the improvement of China's economic level and social modernization. The wide application of computer information technology has changed people's life style to a great extent, especially the automation and intelligent design brought by this technology has made production and life more convenient. As for the monitoring system of the radio transmitting station, due to the adoption of the automatic design, its human labor is fully saved, the maintenance cost is effectively reduced, meanwhile, the labor productivity is fully improved, which points out a new direction for the development of the radio transmitting station in the current society.展开更多
Generally speaking, the MW radio transmitting station will be located at a place with a relatively high altitude, which is relatively empty and has no other special buildings to cover the geographical position. In thi...Generally speaking, the MW radio transmitting station will be located at a place with a relatively high altitude, which is relatively empty and has no other special buildings to cover the geographical position. In this geographical position, although it is said that it is helpful for the signal to spread in a wider range, it will face a great risk of lightning strike if it is affected by thunderstorm weather. Once the medium wave radio transmitting station is struck by lightning, its facilities will not only be harmed, but also directly affect the normal broadcasting of the program, and even more serious will cause serious economic losses. Therefore, it is even more important to improve the lightning protection technology of the MW radio transmitting station. It is even more important to briefly summarize the lightning protection technology of the MW radio transmitting station. In order to deepen the technical level of lightning protection of the medium wave broadcasting transmitting station, a relative basis is given.展开更多
The flexibility of unmanned aerial vehicles(UAVs)allows them to be quickly deployed to support ground users.Intelligent reflecting surface(IRS)can reflect the incident signal and form passive beamforming to enhance th...The flexibility of unmanned aerial vehicles(UAVs)allows them to be quickly deployed to support ground users.Intelligent reflecting surface(IRS)can reflect the incident signal and form passive beamforming to enhance the signal in the specific direction.Motivated by the promising benefits of both technologies,we consider a new scenario in this paper where a UAV uses non-orthogonal multiple access to serve multiple users with IRS.According to their distance to the UAV,the users are divided into the close users and remote users.The UAV hovers above the close users due to their higher rate requirement,while the IRS is deployed near the remote users to enhance their received power.We aim at minimizing the transmit power of UAV by jointly optimizing the beamforming of UAV and the phase shift of IRS while ensuring the decoding requirement.However,the problem is non-convex.Therefore,we decompose it into two sub-problems,including the transmit beamforming optimization and phase shift optimization,which are transformed into second-order cone programming and semidefinite programming,respectively.We propose an iterative algorithm to solve the two sub-problems alternatively.Simulation results prove the effectiveness of the proposed scheme in minimizing the transmit power of UAV.展开更多
The theory of perfectly matched layer (PML) artificial boundary condition (ABC), which is characterized by absorption any wave motions with arbitrary frequency and arbitrarily incident angle, is introduced. The co...The theory of perfectly matched layer (PML) artificial boundary condition (ABC), which is characterized by absorption any wave motions with arbitrary frequency and arbitrarily incident angle, is introduced. The construction process of PML boundary based on elastodynamic partial differential equation (PDE) system is developed. Combining with velocity-stress hybrid finite element formulation, the applicability of PML boundary is investigated and the numerical reflection of PML boundary is estimated. The reflectivity of PML and multi-transmitting formula (MTF) boundary is then compared based on body wave and surface wave simulations. The results show that although PML boundary yields some reflection, its absorption performance is superior to MTF boundary in the numerical simulations of near-fault wave propagation, especially in comer and large angle grazing incidence situations. The PML boundary does not arise any unstable phenomenon and the stability of PML boundary is better than MTF boundary in hybrid finite element method. For a specified problem and analysis tolerance, the computational efficiency of PML boundary is only a little lower than MTF boundary.展开更多
基金the National Natural Science Foundation of China(Nos.62273225,81971767,62103267 and 62103263)。
文摘A two-dimensional rectangular solenoid transmitting coil is proposed to address the problem that the three-dimensional receiving coil occupies excessive space inside the capsule robot.The transmitting coil consists of two pairs of rectangular solenoid coils distributed radially along the human body.By changing the direction of current flow,it can generate a two-dimensional magnetic field covering the whole central plane.Firstly,the working mechanism of the wireless power transfer system is introduced,and then the spatial electromagnetic field generated by the transmitting coil is analyzed through both mathematical calculations and finite element simulations.Finally,an experimental platform is built to determine the optimal resonant frequency of the system and validate its feasibility based on the power transfer efficiency and the receiving power.The experimental results demonstrate that when the receiving coil is located at the center of the coil pair,the receiving power is 1416 mW and the power transfer efficiency is 3.96%.Additionally,when the receiving coil operates in the central plane,it can receive sufficient energy regardless of the orientation.
文摘Sexually transmitted infections (STIs) represent a public health problem due to their high prevalence worldwide and the emergence of multidrug resistance of responsible microorganisms. Medical laboratory diagnosis of sexually transmitted genital infections by traditional methods as culture remains extremely delicate, difficult or impossible (to find extremely fragile organisms that can be cultured). Thus, molecular techniques constitute an alternative to improve accurate diagnostic, personalized patient treatment, and public health. A total of 83 clinical samples including urethral discharge and urine samples from individual patients with symptoms of urethritis received were analyzed using traditional methods and a commercial real-time PCR (qPCR) method. Out of 83 urethritis patients, n = 55 (66.26%) were positive for at least one of the STI pathogens detected by qPCR. qPCR assay was more sensitive (50/83, positive cases) compared to culture (15/83, positive cases) and light microscopy (28/83, positive cases). The most prevalent NTD pathogen in the suspected patients was N. gonorrhoeae with 60.24% (50/83) based on real-time PCR diagnosis. Among the positive cases of STI pathogens, Neisseria gonorrhoeae had the highest frequency 49/55 (89.01%) followed by low frequencies of Trichomonas vaginalis 4/55 (7.27%) and Chlamydia trachomatis 1/55 (1.82%). This highlights the high prevalence of N. gonorrhoeae infection in male urethritis patients and a very important misdiagnosis using traditional routine methods in Burkina Faso by medical laboratories. Thus, this situation may negatively impact patients’ personalized treatment and care and public health with the possible rapid emergence of multidrug-resistant strains. This study also highlights the urgent need to optimize culture for the diagnosis of NTD pathogens in Burkina Faso and the usefulness and the need for the introduction of molecular diagnostic methods in routine diagnosis for the detection of NTD pathogens in the medical laboratories in Burkina Faso.
基金supported by the Yunnan Provincial Key Laboratory of Clinical Virology(No.202002AG070062)the Key Projects of Yunnan Province Science and Technology Department(No.202302AA310044)the National Natural Science Foundation of China(No.82060664).
文摘This study primarily aimed to investigate the prevalence of human papillomavirus(HPV)and other common pathogens of sexually transmitted infections(STIs)in spermatozoa of infertile men and their effects on semen parameters.These pathogens included Ureaplasma urealyticum,Ureaplasma parvum,Chlamydia trachomatis,Mycoplasma genitalium,herpes simplex virus 2,Neisseria gonorrhoeae,Enterococcus faecalis,Streptococcus agalactiae,Pseudomonas aeruginosa,and Staphylococcus aureus.A total of 1951 men of infertile couples were recruited between 23 March 2023,and 17 May 2023,at the Department of Reproductive Medicine of The First People’s Hospital of Yunnan Province(Kunming,China).Multiplex polymerase chain reaction and capillary electrophoresis were used for HPV genotyping.Polymerase chain reaction and electrophoresis were also used to detect the presence of other STIs.The overall prevalence of HPV infection was 12.4%.The top five prevalent HPV subtypes were types 56,52,43,16,and 53 among those tested positive for HPV.Other common infections with high prevalence rates were Ureaplasma urealyticum(28.3%),Ureaplasma parvum(20.4%),and Enterococcus faecalis(9.5%).The prevalence rates of HPV coinfection with Ureaplasma urealyticum,Ureaplasma parvum,Chlamydia trachomatis,Mycoplasma genitalium,herpes simplex virus 2,Neisseria gonorrhoeae,Enterococcus faecalis,Streptococcus agalactiae,and Staphylococcus aureus were 24.8%,25.4%,10.6%,6.4%,2.4%,7.9%,5.9%,0.9%,and 1.3%,respectively.The semen volume and total sperm count were greatly decreased by HPV infection alone.Coinfection with HPV and Ureaplasma urealyticum significantly reduced sperm motility and viability.Our study shows that coinfection with STIs is highly prevalent in the semen of infertile men and that coinfection with pathogens can seriously affect semen parameters,emphasizing the necessity of semen screening for STIs.
文摘The finite element artificial transmitting boundary method is employed here to treat the near field scattering of a cylindrical wave from an irregular cylinder. A comparison is made between this method and the analytical one. And then examples are given to demonstrate the solution of several problems of the irregular object scattering. The method can not only produce clear physical pictures, but can efficiently handle many complicated scattering problems.
文摘To obtain good trade-offs between complexity and performance onpeak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM)using partial transmitting sequence (PTS) schemes, a trellis structure based PTS factor searchmethod is proposed. The trellis search is with a variant constraint length L_C, 1 ≤ L_C ≤ V-1,where V is the number of PTS subblocks. The method is to decide a PTS factor by searching all thepossible paths obtained by varying L_C consecutive factors. The trellis search can be viewed as ageneral PTS factor search model. If L_C = V-1, it is a full search, and if L_C = 1, it is aniterative search. Using different constraint lengths, trellis factor search PTS exhibits differentPAPR reduction performances. A larger L_C results in a better performance and L_C = V-1 results inthe optimum. However, a larger L_C requires more computation. This helps to choose a good trade-offbetween complexity and performance.
基金Funded by the Program for New Century Excellent Talents in University (11-0687)the National Natural Science Foundation of China (51172169)the Fundamental Research Funds for the Central Universities (Wuhan University of Technology)
文摘We investigated image processing algorithms of the original infrared glass flaw image. Using the Laplacian edge enhancement following LSD (Line Segment Detector) algorithm, we can get a good flaw image very consistent with the original one. This study is very helpful to further enhance the infrared glass flaw inspection technique.
基金supported in part by the National Natural Science Foundation of China(Nos.61101180,61401491 and 61490692)
文摘Radar target probing and measurement are challenging tasks for Radio Frequency Simulation(RFS) with pulse radar signal. Due to the long-time duration of pulse radar signal and the limited space of anechoic chamber, the reflected signal returns before pulse radar signal is fully transmitted in RFS. As a consequence, the transmitted and reflected signals are coupled at the receiver. To handle this problem, the Interrupted Transmitting and Receiving(ITR) experiment system is constructed in this paper by dividing the pulse radar signal into sub-pulses. The target echo can be obtained by transmitting and receiving the sub-pulses intermittently. Furthermore, the principles of ITR are discussed and the target probing experiments are performed with the ITR system. It is demonstrated that the ITR system can overcome the coupling between the reflected and transmitted signals. Based on the target probing results, the performance of pulse radar target probing and measurement can be verified in RFS with the ITR system.
基金This research investigation was supported by the National Natural Science Foundation of China(Grant No.51678248 and Grant No.51878296)the Fundamental Research Funds for the Central Universities.And sincere thanks also to State Key Lab of Subtropical Building Science,South China University of Technology under Grant No.2017KB15 and the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin under Grant No.IWHRSKL-KF201818.
文摘Based on the modified scale boundary finite element method and continued fraction solution,a high-order doubly asymptotic transmitting boundary(DATB)is derived and extended to the simulation of vector wave propagation in complex layered soils.The high-order DATB converges rapidly to the exact solution throughout the entire frequency range and its formulation is local in the time domain,possessing high accuracy and good efficiency.Combining with finite element method,a coupled model is constructed for time-domain analysis of underground station-layered soil interaction.The coupled model is divided into the near and far field by the truncated boundary,of which the near field is modelled by FEM while the far field is modelled by the high-order DATB.The coupled model is implemented in an open source finite element software,OpenSees,in which the DATB is employed as a super element.Numerical examples demonstrate that results of the coupled model are stable,accurate and efficient compared with those of the extended mesh model and the viscous-spring boundary model.Besides,it has also shown the fitness for long-time seismic response analysis of underground station-layered soil interaction.Therefore,it is believed that the coupled model could provide a new approach for seismic analysis of underground station-layered soil interaction and could be further developed for engineering.
基金the Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period(Grant No.2015BAK17B01)Science Foundation of Institute of Engineering Mechanics,CEA under Grant No.2014B10+1 种基金Natural Science Foundation of Heilongjiang Province of China under Grant No.LC201403National Natural Science Foundation under Grant No.51378479 and No.51108431
文摘Local coupling instability will occur when the numerical scheme of absorbing boundary condition and that of the field wave equation allow energies to spontaneously enter into the computational domain. That is, the two schemes support common wave solutions with group velocity pointed into the computation domain. The key to eliminate local coupling instability is to avoid such wave solutions. For lumped-mass finite element simulation of P-SV wave motion in a 2D waveguide, an approach for stable implementation of high order multi-transmitting formula is provided. With a uniform rectangular mesh, it is proven and validated that high-freqaency local coupling instability can be eliminated by setting the ratio of the element size equal to or greater than x/2 times the ratio of the P wave velocity to the S wave velocity. These results can be valuable for dealing instability problems induced by other absorbing boundary conditions.
基金Supported by the Laboratory of Robotics, Chinese Academy of Sciences
文摘The transmitting properties of acoustic emission(AE) signal is investigated in order to provide experimental basis for application of AE technique. In the paper, the influences of the geometric shape and material properties of the mediums and the bearing type on AE transmission are analyzed for providing the theoretic foundation for selecting the transmission route of AE signal and the fixing location of the AE sensor reasonably. According to the transmitting properties of AE, an apparatus of detecting AE signal for the tool breakage monitoring system has been set up. Its application results show that it is of benefit to improving the sensitivity of the tool breakage monitoring system.
基金jointly sponsored by the National Natural Foundation of China(41474048)the Special Fund of Academician Chen Yong Workstation Project of Yunnan Province(2014IC007)
文摘This paper summarizes the basic situation of the Binchuan Transmitting Seismic Station and the geophysical observations of the area where it is located,with a focus on the constitution of the observation system of the transmitting seismic station,the excitation characteristics and propagation distance of signals excited by the airgun source in the reservoir and well. The paper also summarizes and discusses on the results of the observations and problems encountered since the Transmitting Seismic Station was built.Finally,this paper proposes the main research to be carried out on the basis of the project aims.
基金Under the auspices of National High Technology Research and Development Program of China (No. 2001AA132010)
文摘The influence derived from atmosphere transmitting of radar wave, in the application of high-resolution airborne Synthetic Aperture Radar (SAR) stereo positioning, may produce some phase errors, and eventually be introduced into positioning model. This paper described the principle of airborne SAR stereo positioning and the error sources of stereo positioning accuracy that arose from atmosphere transmitting, established a corresponding assess- ment model of atmosphere transmitting influence, and testified the model and the assessment principle taking the 1-m resolution airborne SAR images of Zigong City, Sichuan Province in China, as the test dataset. The test result has proved that the assessment model is reliable and reasonable. And, it has shown that the phase error arisen from time delay is the main error source during the atmosphere transmitting, which has much more influences on cross-track di- rection and introduces a stereo positioning error of about eight meters, but less on the along-track direction.
基金Funded by the National High Technology Research and Development Program of China (2001AA322100)the Ministry of Education of Republic of China (106086)the Cooperation and Merger Found of Beijing ( ZH114140537)
文摘Common clay, Kaolin and Bentonite were used as additives to prepare water-transmitting coating fiber, respectively, and the water-transmitting characteristic of coating fiber was studied. Different water-transmitting coating fibers were prepared by coating fiber using coating material with different mass proportions of additives to adhesive. And the coating materials were made from three kinds of inorganic clays as additives respectively and polyvinyl alcohol (PVA) as adhesive. Furthermore, the surface morphology and water-transmitting capacity of coating fiber were studied by SEM, Perkin Elmer Diamond SII thermal multi-analyzer and instrument for quick measurement moisture M30. The experimental results indicate that water-transmitting coating fibers made from three kinds of clays all have water-transmitting capacity. The surface of water-transmitting coating fiber prepared by common clay T is continuous and compact, and the water-transmitting effect is better than coating fibers made from other clays.
基金National Natural Science Foundation of China under Grant Nos.41930431 and 41974116Natural Science Foundation of Heilongjiang Province No.YQ2021D008CNPC Innovation Found No.2021DQ02-0302 for supporting this work.
文摘An accurate numerical simulation for wave equations is essential for understanding of wave propagation in the earth's interior as well as full waveform inversion and reverse time migration. However, due to computational cost and hardware capability limitations, numerical simulations are often performed within a finite domain. Thus, an adequate absorbing boundary condition (ABC) is indispensable for obtaining accurate numerical simulation results. In this study, we develop a hybrid ABC based on a transmitting boundary, which is referred to as THABC, to eliminate artificial boundary reflections in 3D second-order fractional viscoacoustic numerical simulations. Furthermore, we propose an adaptive weighted coefficient to reconcile the transmitting and viscoacoustic wavefields in THABC. Through several numerical examples, we determine that the proposed THABC approach is characterized by the following benefits. First, with the same number of absorbing layers, THABC exhibits a better ability in eliminating boundary reflection than traditional ABC schemes. Second, THABC is more effective in computation, since it only requires the wavefields at the current and last time steps to solve the transmitting formula within the absorbing layers. Benefiting from a simple but effective combination between the transmitting equation and the second-order wave equation, our scheme performs well in the 3D fractional Laplacian viscoacoustic numerical simulation.
文摘In this paper, we conduct research on the novel mode of plane graphic design from the core angle of the primary visual language transmitting. Relationship between nationality and cosmopolitan processing in graphic design in the design of image symbol expression and significance of the symbol on the one hand require symbolic form must have enough openness and the cognitive function on the other hand with semiotics method can let the designer to extract the most representative and symbolic notation style to carry on the design expression. As a non- verbal symbols, from the perspective of the view, the design image is no national boundaries, but the human form to beauty and should express the symbolism of cognition is the same. In the form of the ethnic groups of the cosmopolitan codes are for identification of Chinese contemporary design possible effective methods. Our research proposes novel perspective of the design which is meaningful.
文摘In the process of promoting social development, science and technology undoubtedly played a huge role, bringing earth-shaking changes to the improvement of China's economic level and social modernization. The wide application of computer information technology has changed people's life style to a great extent, especially the automation and intelligent design brought by this technology has made production and life more convenient. As for the monitoring system of the radio transmitting station, due to the adoption of the automatic design, its human labor is fully saved, the maintenance cost is effectively reduced, meanwhile, the labor productivity is fully improved, which points out a new direction for the development of the radio transmitting station in the current society.
文摘Generally speaking, the MW radio transmitting station will be located at a place with a relatively high altitude, which is relatively empty and has no other special buildings to cover the geographical position. In this geographical position, although it is said that it is helpful for the signal to spread in a wider range, it will face a great risk of lightning strike if it is affected by thunderstorm weather. Once the medium wave radio transmitting station is struck by lightning, its facilities will not only be harmed, but also directly affect the normal broadcasting of the program, and even more serious will cause serious economic losses. Therefore, it is even more important to improve the lightning protection technology of the MW radio transmitting station. It is even more important to briefly summarize the lightning protection technology of the MW radio transmitting station. In order to deepen the technical level of lightning protection of the medium wave broadcasting transmitting station, a relative basis is given.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant 62271099。
文摘The flexibility of unmanned aerial vehicles(UAVs)allows them to be quickly deployed to support ground users.Intelligent reflecting surface(IRS)can reflect the incident signal and form passive beamforming to enhance the signal in the specific direction.Motivated by the promising benefits of both technologies,we consider a new scenario in this paper where a UAV uses non-orthogonal multiple access to serve multiple users with IRS.According to their distance to the UAV,the users are divided into the close users and remote users.The UAV hovers above the close users due to their higher rate requirement,while the IRS is deployed near the remote users to enhance their received power.We aim at minimizing the transmit power of UAV by jointly optimizing the beamforming of UAV and the phase shift of IRS while ensuring the decoding requirement.However,the problem is non-convex.Therefore,we decompose it into two sub-problems,including the transmit beamforming optimization and phase shift optimization,which are transformed into second-order cone programming and semidefinite programming,respectively.We propose an iterative algorithm to solve the two sub-problems alternatively.Simulation results prove the effectiveness of the proposed scheme in minimizing the transmit power of UAV.
基金National Natural Science Foundation of China (50608024 and 50538050).
文摘The theory of perfectly matched layer (PML) artificial boundary condition (ABC), which is characterized by absorption any wave motions with arbitrary frequency and arbitrarily incident angle, is introduced. The construction process of PML boundary based on elastodynamic partial differential equation (PDE) system is developed. Combining with velocity-stress hybrid finite element formulation, the applicability of PML boundary is investigated and the numerical reflection of PML boundary is estimated. The reflectivity of PML and multi-transmitting formula (MTF) boundary is then compared based on body wave and surface wave simulations. The results show that although PML boundary yields some reflection, its absorption performance is superior to MTF boundary in the numerical simulations of near-fault wave propagation, especially in comer and large angle grazing incidence situations. The PML boundary does not arise any unstable phenomenon and the stability of PML boundary is better than MTF boundary in hybrid finite element method. For a specified problem and analysis tolerance, the computational efficiency of PML boundary is only a little lower than MTF boundary.