All-vanadium flow batteries(VFBs)are one of the most promising large-scale energy storage technologies.Conducting an operando quantitative analysis of the polarizations in VFBs under different conditions is essential ...All-vanadium flow batteries(VFBs)are one of the most promising large-scale energy storage technologies.Conducting an operando quantitative analysis of the polarizations in VFBs under different conditions is essential for developing high power density batteries.Here,we employ an operando decoupling method to quantitatively analyze the polarizations in each electrochemical and chemical reaction of VFBs under different catalytic conditions.Results show that the reduction reaction of V^(3+)presents the largest activation polarization,while the reduction reaction of VO_(2)^(+)primarily contributes to concentration polarizations due to the formation of the intermediate product V_(2)O_(3)^(3+).Additionally,it is found that the widely used electrode catalytic methods,incorporating oxygen functional groups and electrodepositing Bi,not only enhance the reaction kinetics but also exacerbate concentration polarizations simultaneously,especially during the discharge process.Specifically,in the battery with the high oxygen-containing electrodes,the negative side still accounts for the majority of activation loss(75.3%)at 200 mA cm^(-2),but it comes down to 36,9% after catalyzing the negative reactions with bismuth.This work provides an effective way to probe the limiting steps in flow batteries under various working conditions and offers insights for effectively enhancing battery performance for future developments.展开更多
It is difficult to identify the source(s) of mixed oils from multiple source rocks, and in particular the relative contribution of each source rock. Artificial mixing experiments using typical crude oils and ratios ...It is difficult to identify the source(s) of mixed oils from multiple source rocks, and in particular the relative contribution of each source rock. Artificial mixing experiments using typical crude oils and ratios of different biomarkers show that the relative contribution changes are non-linear when two oils with different concentrations of biomarkers mix with each other. This may result in an incorrect conclusion if ratios of biomarkers and a simple binary linear equation are used to calculate the contribution proportion of each end-member to the mixed oil. The changes of biomarker ratios with the mixing proportion of end-member oils in the trinal mixing model are more complex than in the binary mixing model. When four or more oils mix, the contribution proportion of each end-member oil to the mixed oil cannot be calculated using biomarker ratios and a simple formula. Artificial mixing experiments on typical oils reveal that the absolute concentrations of biomarkers in the mixed oil cause a linear change with mixing proportion of each end-member. Mathematical inferences verify such linear changes. Some of the mathematical calculation methods using the absolute concentrations or ratios of biomarkers to quantitatively determine the proportion of each end-member in the mixed oils are deduced from the results of artificial experiments and by theoretical inference. Ratio of two biomarker compounds changes as a hyperbola with the mixing proportion in the binary mixing model, as a hyperboloid in the trinal mixing model, and as a hypersurface when mixing more than three end- members. The mixing proportion of each end-member can be quantitatively determined with these mathematical models, using the absolute concentrations and the ratios of biomarkers. The mathematical calculation model is more economical, convenient, accurate and reliable than conventional artificial mixing methods.展开更多
Assembling of a few particles into a cluster commonly occurs in many systems.However,it is still challenging to precisely control particle assembling,due to the various amorphous structures induced by thermal fluctuat...Assembling of a few particles into a cluster commonly occurs in many systems.However,it is still challenging to precisely control particle assembling,due to the various amorphous structures induced by thermal fluctuations during cluster formation.Although these structures may have very different degrees of aggregation,a quantitative method is lacking to describe them,and how these structures evolve remains unclear.Therefore a significant step towards precise control of particle self-assembly is to describe and analyze various aggregation structures during cluster formation quantitatively.In this work,we are motivated to propose a method to directly count and quantitatively compare different aggregated structures.We also present several case studies to evaluate how the aggregated structures during cluster formation are affected by external controlling factors,e.g.,different interaction ranges,interaction strengths,or anisotropy of attraction.展开更多
The Ts/NDVI method was adopted to retrieve soil moisture with multi-temporal and multi-sensor remotely sensed data f ETM+ and ASTER in study area. The retrieved soil moisture maps were consistent with the soil type an...The Ts/NDVI method was adopted to retrieve soil moisture with multi-temporal and multi-sensor remotely sensed data f ETM+ and ASTER in study area. The retrieved soil moisture maps were consistent with the soil type and vegetation, which were also the two main factors determining the distribution of soil moisture.展开更多
Antiferromagnetism has become a promising candidate for the next generation electronic devices due to its thermal stability,low energy consumption,and fast switching speed.However,the canceling of the net magnetic mom...Antiferromagnetism has become a promising candidate for the next generation electronic devices due to its thermal stability,low energy consumption,and fast switching speed.However,the canceling of the net magnetic moment in antiferromagnetic order presents great challenge on quantitative characterization and modulation,hindering its investigation and application.In this work,utilizing the optical second harmonic generation(SHG)in a wide temperature range,the integrated differential phase contrast scanning transmission electron microscopy,and firstprinciples calculations,we performed a quantitative study on the evolution of non-collinear antiferromagnetic order in BiFeO_(3)films with a series of strains.We found that the antiferromagnetic coupling was significantly enhanced,featured by the increase of Néel temperature from 428 K to 646 K,and by one order of enhancement of SHG intensity contributed from the G-type antiferromagnetic order by strain manipulation from-2.4%to+0.6%.We attributed the enhancement of the antiferromagnetic coupling to the enhancement of the superexchange interaction as the Fe-O-Fe bond angle approaches 180°when the in-plane lattice constants increase,which might also result in a tendency from a non-collinear antiferromagnetic order to a collinear one.Our work not only bridges the antiferromagnetic order and the strain manipulation in epitaxial multiferroics,more importantly,also paves a way for quantitative characterization by SHG technology and the precise manipulation of antiferromagnetism.展开更多
为实现鳗败血假单胞菌(Pseudomonas anguilliseptica,PA)早期感染的快速诊断,基于recA基因建立了2种检测方法:SYBR Green I实时荧光定量PCR(SYBR Green I real-time quantitative PCR)和重组酶介导等温扩增结合侧流层析试纸条(Recombina...为实现鳗败血假单胞菌(Pseudomonas anguilliseptica,PA)早期感染的快速诊断,基于recA基因建立了2种检测方法:SYBR Green I实时荧光定量PCR(SYBR Green I real-time quantitative PCR)和重组酶介导等温扩增结合侧流层析试纸条(Recombinase-mediated isothermal amplification combined with lateral flow dipstick,RAA-LFD)。以PA的管家基因recA为靶标,设计筛选出1对qPCR特异性引物、1对RAA特异性引物和RAA探针,并通过同源重组构建标准品质粒pUC18-recA,以建立2种检测方法。将所建立的方法应用于PA感染的大口黑鲈(Micropterus salmoides)组织样本检测,并测定PA载量。结果表明,建立的qPCR方法最低DNA检测浓度为2.816×10^(2)拷贝·μL^(-1),模板量与Ct值在构建的标准曲线中呈现良好的线性关系(r^(2)=0.9992),且具有较强的特异性和较高的稳定性;RAA-LFD方法的最低DNA检测浓度为2.816×10^(4)拷贝·μL^(-1),检测时间最快可达15 min,显色较为稳定且特异性强。应用结果显示,qPCR和RAALFD方法的阳性样本检出率分别为87.50%和85.00%,较普通PCR方法明显提高;其中,qPCR方法可准确测定PA感染宿主组织中的菌体载量,肾中的载量最高,达3.533×10^(7)拷贝·ng^(-1)。建立的2种方法特异性均较好,其中qPCR方法灵敏性更高,RAA-LFD方法则时效性更强,均可用于PA早期感染的检测,且qPCR方法还可对感染宿主体内的菌体载量进行定量分析。展开更多
Pythium stalk rot(PSR)is a destructive disease of maize,severely affecting yield and grain quality.The identification of quantitative trait loci(QTL)or genes for resistance to PSR forms the basis of diseaseresistant h...Pythium stalk rot(PSR)is a destructive disease of maize,severely affecting yield and grain quality.The identification of quantitative trait loci(QTL)or genes for resistance to PSR forms the basis of diseaseresistant hybrids breeding.In this study,a major QTL,Resistance to Pythium stalk rot 1(RPSR1),was identified from a set of recombinant inbred lines derived from MS71 and POP.Using a recombinant progeny testing strategy,RPSR1 was fine-mapped in a 472 kb interval.Through candidate gene expression,gene knock-down and knock-out studies,a leucine-rich repeat receptor-like kinase gene,PEP RECEPTOR 2(ZmPEPR2),was assigned as a PSR resistance gene.These results provide insights into the genetic architecture of resistance to PSR in maize,which should facilitate breeding maize for resistance to stalk rot.展开更多
Supercritical CO_(2)(SC-CO_(2))fracturing stands out a promising waterless stimulation technique in the development of unconventional resources.While numerous studies have delved into the inducedfracture mechanism of ...Supercritical CO_(2)(SC-CO_(2))fracturing stands out a promising waterless stimulation technique in the development of unconventional resources.While numerous studies have delved into the inducedfracture mechanism of SC-CO_(2),the small scale of rock samples and synthetic materials used in many studies have limited a comprehensive understanding of fracture propagation in unconventional formations.In this study,cubic tight sandstone samples with dimensions of 300 mm were employed to conduct SC-CO_(2)fractu ring experiments under true-triaxial stre ss conditions.The spatial morphology and quantitative attributes of fracture induced by water and SC-CO_(2)fracturing were compared,while the impact of in-situ stress on fracture propagation was also investigated.The results indicate that the SCCO_(2)fracturing takes approximately ten times longer than water fracturing.Furthermore,under identical stress condition,the breakdown pressure(BP)for SC-CO_(2)fracturing is nearly 25%lower than that for water fracturing.A quantitative analysis of fracture morphology reveals that water fracturing typically produces relatively simple fracture pattern,with the primary fracture distribution predominantly controlled by bedding planes.In contrast,SC-CO_(2)fracturing results in a more complex fracture morphology.As the differential of horizontal principal stress increases,the BP for SC-CO_(2)fractured rock exhibits a downward trend,and the induced fracture morphology becomes more simplified.Moreover,the presence of abnormal in-situ stress leads to a further increase in the BP for SC-CO_(2)fracturing,simultaneously enhancing the development of a more conductive fracture network.These findings provide critical insights into the efficiency and behavior of SC-CO_(2)fracturing in comparison to traditional water-based fracturing,offering valuable implication for its potential applications in unconventional reservoirs.展开更多
Quantitative detection of trace small-sized nanoplastics(<100 nm)remains a significant challenge in surface-enhanced Raman scattering(SERS).To tackle this issue,we developed a hydrophobic CuO@Ag nanowire substrate ...Quantitative detection of trace small-sized nanoplastics(<100 nm)remains a significant challenge in surface-enhanced Raman scattering(SERS).To tackle this issue,we developed a hydrophobic CuO@Ag nanowire substrate and introduced a multiplex-feature analysis strategy based on the coffee ring effect.This substrate not only offers high Raman enhancement but also exhibits a high probability of detection(POD),enabling rapid and accurate identification of 50 nm polystyrene nanoplastics over a broad concentration range(1–10−10 wt%).Importantly,experimental results reveal a strong correlation between the coffee ring formation and the concentration of nanoplastic dispersion.By incorporating Raman signal intensity,coffee ring diameter,and POD as combined features,we established a machine learning-based mapping between nanoplastic concentration and coffee ring characteristics,allowing precise predictions of dispersion concentration.The mean squared error of these predictions is remarkably low,ranging from 0.21 to 0.54,representing a 19 fold improvement in accuracy compared to traditional linear regression-based methods.This strategy effectively integrates SERS with wettability modification techniques,ensuring high sensitivity and fingerprinting capabilities,while addressing the limitations of Raman signal intensity in accurately reflecting concentration changes at ultra-low levels,providing a new idea for precise SERS measurements of nanoplastics.展开更多
Bone age assessment(BAA)aims to determine whether a child’s growth and development are normal concerning their chronological age.To predict bone age more accurately based on radiographs,and for the left-hand X-ray im...Bone age assessment(BAA)aims to determine whether a child’s growth and development are normal concerning their chronological age.To predict bone age more accurately based on radiographs,and for the left-hand X-ray images of different races model can have better adaptability,we propose a neural network in parallel with the quantitative features from the left-hand bone measurements for BAA.In this study,a lightweight feature extractor(LFE)is designed to obtain the featuremaps fromradiographs,and amodule called attention erasermodule(AEM)is proposed to capture the fine-grained features.Meanwhile,the dimensional information of the metacarpal parts in the radiographs is measured to enhance the model’s generalization capability across images fromdifferent races.Ourmodel is trained and validated on the RSNA,RHPE,and digital hand atlas datasets,which include images from various racial groups.The model achieves a mean absolute error(MAE)of 4.42 months on the RSNA dataset and 15.98 months on the RHPE dataset.Compared to ResNet50,InceptionV3,and several state-of-the-art methods,our proposed method shows statistically significant improvements(p<0.05),with a reduction in MAE by 0.2±0.02 years across different racial datasets.Furthermore,t-tests on the features also confirm the statistical significance of our approach(p<0.05).展开更多
Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical...Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical guarantees.In this pa-per,we introduce several topics on quantitative risk management and review some of the recent studies and advancements on the topics.We consider several risk metrics and study decision models that involve the metrics,with a main focus on the related com-puting techniques and theoretical properties.We show that stochastic optimization,as a powerful tool,can be leveraged to effectively address these problems.展开更多
Mg-4.8Zn-0.8Y,Mg-18Zn-3Y,Mg-15Zn-5Y,Mg-30Zn-5Y and Mg-42Zn-7Y(wt%)alloys containing icosahedral quasicrystalline phases were prepared using the ordinary solidification method.The impact of Mg matrix porosity on the te...Mg-4.8Zn-0.8Y,Mg-18Zn-3Y,Mg-15Zn-5Y,Mg-30Zn-5Y and Mg-42Zn-7Y(wt%)alloys containing icosahedral quasicrystalline phases were prepared using the ordinary solidification method.The impact of Mg matrix porosity on the tensile strength and hardness of the alloys was studied.The porosity of the Mg matrix was quantitatively assessed using scanning electron microscope and Image-Pro Plus 6.0 software.Tensile tests were conducted at room temperature.Results show that the maximum tensile strength of the alloy is 175.56 MPa,with a corresponding Mg matrix porosity of 76.74%.Through fitting analysis,it is determined that the maximum tensile strength is achieved when the porosity of the Mg matrix is 64.87%.The microhardness test results indicate a gradual decrease in alloy hardness with increasing the porosity of Mg matrix.This study provides an effective quantitative analysis method for enhancing the mechanical properties of magnesium alloys.展开更多
Creutzfeldt-Jakob disease(CJD)is a rare neurodegenerative disorder characterized by abnormalities in the prion protein(PrP),the most common form of human prion disease.Although Genome-Wide Association Studies(GWAS)hav...Creutzfeldt-Jakob disease(CJD)is a rare neurodegenerative disorder characterized by abnormalities in the prion protein(PrP),the most common form of human prion disease.Although Genome-Wide Association Studies(GWAS)have identified numerous risk genes for CJD,the mechanisms underlying these risk loci remain poorly understood.This study aims to elucidate novel genetically prioritized candidate proteins associated with CJD in the human brain through an integrative analytical pipeline.Utilizing datasets from Protein Quantitative Trait Loci(pQTL)(NpQTL1=152,NpQTL2=376),expression QTL(eQTL)(N=452),and the CJD GWAS(NCJD=4110,NControls=13569),we implemented a systematic analytical pipeline.This pipeline included Proteome-Wide Association Study(PWAS),Mendelian randomization(MR),Bayesian colocalization,and Transcriptome-Wide Association Study(TWAS)to identify novel genetically prioritized candidate proteins implicated in CJD pathogenesis within the brain.Through PWAS,we identified that the altered abundance of six brain proteins was significantly associated with CJD.Two genes,STX6 and PDIA4,were established as lead causal genes for CJD,supported by robust evidence(False Discovery Rate<0.05 in MR analysis;PP4/(PP3+PP4)≥0.75 in Bayesian colocalization).Specifically,elevated levels of STX6 and PDIA4 were associated with an increased risk of CJD.Additionally,TWAS demonstrated that STX6 and PDIA4 were associated with CJD at the transcriptional level.展开更多
The concept of local shock strength and a quantitative measure index str of local shock strength are proposed,derived from the oblique shock relation and the monotonic relationship between total pressure loss ratio an...The concept of local shock strength and a quantitative measure index str of local shock strength are proposed,derived from the oblique shock relation and the monotonic relationship between total pressure loss ratio and normal Mach number.Utilizing the high density gradient characteristic of shock waves and the oblique shock relation,a post-processing algorithm for two-dimensional flow field data is developed.The objective of the post-processing algorithm is to obtain specific shock wave location coordinates and calculate the corresponding str from flow filed data under the calibration of the oblique shock relation.Valida-tion of this post-processing algorithm is conducted using a standard model example that can be solved analytically.Combining the concept of local shock strength with the post-processing algorithm,a local shock strength quantitative mapping approach is established for the first time.This approach enables a quantitative measure and visualization of local shock strength at distinct locations,represented by color mapping on the shock structures.The approach can be applied to post-processing numerical sim-ulation data of two-dimensional flows.Applications to the intersection of two left-running oblique shock waves(straight shock waves),the bow shock in front of a cylinder(curved shock wave),and Mach reflection(mixed straight and curved shock waves)demonstrate the accuracy,and effectiveness of the mapping approach in investigating diverse shock wave phenomena.The quan-titative mapping approach of str may be a valuable tool in the design of supersonic/hypersonic vehicles and the exploration of shock wave evolution.展开更多
This paper reviews the history and lessons of global oil crises while exploring the establishment of a quantitative evaluation model for oil security with Chinese characteristics.Using principal component analysis,it ...This paper reviews the history and lessons of global oil crises while exploring the establishment of a quantitative evaluation model for oil security with Chinese characteristics.Using principal component analysis,it constructs an oil security evaluation indicator system for China with two main-level indicators:foreign oil dependency and its impacts,and market intervention and security assurance.展开更多
Quantitative structure-retention relationship(QSRR)is an important tool in chromatography.QSRR examines the correlation between molecular structures and their retention behaviors during chromatographic separation.This...Quantitative structure-retention relationship(QSRR)is an important tool in chromatography.QSRR examines the correlation between molecular structures and their retention behaviors during chromatographic separation.This approach involves developing models for predicting the retention time(RT)of analytes,thereby accelerating method development and facilitating compound identification.In addition,QSRR can be used to study compound retention mechanisms and support drug screening efforts.This review provides a comprehensive analysis of QSRR workflows and applications,with a special focus on the role of artificial intelligence-an area not thoroughly explored in previous reviews.Moreover,we discuss current limitations in RT prediction and propose promising solutions.Overall,this review offers a fresh perspective on future QSRR research,encouraging the development of innovative strategies that enable the diverse applications of QSRR models in chromatographic analysis.展开更多
Objective To determine the prevalence of lumbar spondylolysis(LS)and the proportion of spondylolytic spondylolisthesis(SS)in China,and to evaluate the musculoskeletal status of patients with LS and SS.Methods Spine Co...Objective To determine the prevalence of lumbar spondylolysis(LS)and the proportion of spondylolytic spondylolisthesis(SS)in China,and to evaluate the musculoskeletal status of patients with LS and SS.Methods Spine Computed Tomography(CT)images were collected from community populations aged 40 and above in a nationwide multi-center project.LS was diagnosed,and SS was graded by an experienced radiologist.Bone mineral density(BMD)and paraspinal muscle parameters were quantified based on CT images.Results One hundred and seventeen patients of a total of 3,317 individuals were diagnosed with LS,corresponding to a prevalence rate of 3.53%.63 of the 1,214 males(5.18%)and 54 of the 2,103 females(2.57%)were diagnosed with LS.SS occurred in 64/121 vertebrae(52.89%).BMD was not associated with LS(P=0.341).The L5 extensor paraspinal muscle density was higher in the LS group than in the non-LS group.In the LS group,patients with SS had a smaller L5 paraspinal extensor muscle cross-sectional area than those without SS(P=0.003).Conclusion The prevalence of LS in Chinese adults was 3.53%,with prevalence rates of 5.18%in males and 2.57%in females.Patients with LS have higher muscle density,whereas those with SS have smaller muscle cross-sectional areas at the L5 level.展开更多
Cryptocurrency,a booming decentralised asset designed based on the blockchain architecture,is particularly important to the market at the present time by studying the volatility risk of cryptocurrencies.In this paper,...Cryptocurrency,a booming decentralised asset designed based on the blockchain architecture,is particularly important to the market at the present time by studying the volatility risk of cryptocurrencies.In this paper,we empirically analyse the volatility risk of cryptocurrencies through quantitative analysis models,comprehensively using the Markov state transition GARCH model with skewed distribution(Skew-MSGARCH)and the autoregressive conditional volatility density ARJI model introducing the Poisson jump factor,and selecting the earliest developed and the most mature currency price volatility daily return series,to deeply explore the volatility risk of digital cryptocurrencies.risk.Finally,it can be seen through in-depth analyses that the expectation factor and information inducement are the main reasons leading to the exacerbation of the volatility risk of digital cryptocurrencies.It is recommended that this situation be optimised and improved in terms of the value function of digital cryptocurrencies themselves and the implementation of systematic risk management and regulatory innovation.As an important component of the digital economy,blockchain technology can effectively regulate and improve the volatility of digital cryptocurrencies under macroeconomic policies,thereby maintaining the security and stability of emerging financial markets.展开更多
Eye depth is an important agronomic trait affecting tubers'appearance,quality,and processing suitability.Hence,cultivating varieties with uniform shapes and shallow eye depth are important goals for potato breedin...Eye depth is an important agronomic trait affecting tubers'appearance,quality,and processing suitability.Hence,cultivating varieties with uniform shapes and shallow eye depth are important goals for potato breeding.In this study,based on the primary mapping of the tuber eyedepth locus using a small primary-segregating population,a large secondary-segregating population with 2100 individuals was used to map the eye-depth locus further.A major quantitative trait locus for eye-depth on chromosome 10 was identified(designated qEyd10.1)using BSAseq and traditional QTL mapping methods.The qEyd10.1 could explain 55.0%of the eye depth phenotypic variation and was further narrowed to a 309.10 kb interval using recombinant analysis.To predict candidate genes,tissue sectioning and RNA-seq of the specific tuber tissues were performed.Genes encoding members of the peroxidase superfamily with likely roles in indole acetic acid regulation were considered the most promising candidates.These results will facilitate marker-assisted selection for the shallow-eye trait in potato breeding and provide a solid basis for eye-depth gene cloning and the analysis of tuber eye-depth regulatory mechanisms.展开更多
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(2023B0303000002)the National Natural Science Foundation of China(No.52206089)+3 种基金the Guangdong Basic and Applied Basic Research Foundation(2024A1515010288,2023B1515120005)the Natural Science Foundation of Shenzhen(JCYJ20230807093315033)the Shenzhen Engineering Research Center,Southern University of Science and Technology(No.XMHT20230208003)high level of special funds(G03034K001)。
文摘All-vanadium flow batteries(VFBs)are one of the most promising large-scale energy storage technologies.Conducting an operando quantitative analysis of the polarizations in VFBs under different conditions is essential for developing high power density batteries.Here,we employ an operando decoupling method to quantitatively analyze the polarizations in each electrochemical and chemical reaction of VFBs under different catalytic conditions.Results show that the reduction reaction of V^(3+)presents the largest activation polarization,while the reduction reaction of VO_(2)^(+)primarily contributes to concentration polarizations due to the formation of the intermediate product V_(2)O_(3)^(3+).Additionally,it is found that the widely used electrode catalytic methods,incorporating oxygen functional groups and electrodepositing Bi,not only enhance the reaction kinetics but also exacerbate concentration polarizations simultaneously,especially during the discharge process.Specifically,in the battery with the high oxygen-containing electrodes,the negative side still accounts for the majority of activation loss(75.3%)at 200 mA cm^(-2),but it comes down to 36,9% after catalyzing the negative reactions with bismuth.This work provides an effective way to probe the limiting steps in flow batteries under various working conditions and offers insights for effectively enhancing battery performance for future developments.
文摘It is difficult to identify the source(s) of mixed oils from multiple source rocks, and in particular the relative contribution of each source rock. Artificial mixing experiments using typical crude oils and ratios of different biomarkers show that the relative contribution changes are non-linear when two oils with different concentrations of biomarkers mix with each other. This may result in an incorrect conclusion if ratios of biomarkers and a simple binary linear equation are used to calculate the contribution proportion of each end-member to the mixed oil. The changes of biomarker ratios with the mixing proportion of end-member oils in the trinal mixing model are more complex than in the binary mixing model. When four or more oils mix, the contribution proportion of each end-member oil to the mixed oil cannot be calculated using biomarker ratios and a simple formula. Artificial mixing experiments on typical oils reveal that the absolute concentrations of biomarkers in the mixed oil cause a linear change with mixing proportion of each end-member. Mathematical inferences verify such linear changes. Some of the mathematical calculation methods using the absolute concentrations or ratios of biomarkers to quantitatively determine the proportion of each end-member in the mixed oils are deduced from the results of artificial experiments and by theoretical inference. Ratio of two biomarker compounds changes as a hyperbola with the mixing proportion in the binary mixing model, as a hyperboloid in the trinal mixing model, and as a hypersurface when mixing more than three end- members. The mixing proportion of each end-member can be quantitatively determined with these mathematical models, using the absolute concentrations and the ratios of biomarkers. The mathematical calculation model is more economical, convenient, accurate and reliable than conventional artificial mixing methods.
文摘Assembling of a few particles into a cluster commonly occurs in many systems.However,it is still challenging to precisely control particle assembling,due to the various amorphous structures induced by thermal fluctuations during cluster formation.Although these structures may have very different degrees of aggregation,a quantitative method is lacking to describe them,and how these structures evolve remains unclear.Therefore a significant step towards precise control of particle self-assembly is to describe and analyze various aggregation structures during cluster formation quantitatively.In this work,we are motivated to propose a method to directly count and quantitatively compare different aggregated structures.We also present several case studies to evaluate how the aggregated structures during cluster formation are affected by external controlling factors,e.g.,different interaction ranges,interaction strengths,or anisotropy of attraction.
文摘The Ts/NDVI method was adopted to retrieve soil moisture with multi-temporal and multi-sensor remotely sensed data f ETM+ and ASTER in study area. The retrieved soil moisture maps were consistent with the soil type and vegetation, which were also the two main factors determining the distribution of soil moisture.
基金supported by the National Key Basic Research Program of China(Grant No.2019YFA0308500,2020YFA0309100,and 2021YFA1400701)the National Natural Science Foundation of China(Grant No.12174437,No.12222414,No.12074416,and No.12104054)+4 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB33030200)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.Y2022003)the China Postdoctoral Innovative Talent Support Program(Grant No.BX20240409)the China Postdoctoral Science Foundation(Grant No.2024M763507)the Beijing Natural Science Foundation(Grant No.1222035).
文摘Antiferromagnetism has become a promising candidate for the next generation electronic devices due to its thermal stability,low energy consumption,and fast switching speed.However,the canceling of the net magnetic moment in antiferromagnetic order presents great challenge on quantitative characterization and modulation,hindering its investigation and application.In this work,utilizing the optical second harmonic generation(SHG)in a wide temperature range,the integrated differential phase contrast scanning transmission electron microscopy,and firstprinciples calculations,we performed a quantitative study on the evolution of non-collinear antiferromagnetic order in BiFeO_(3)films with a series of strains.We found that the antiferromagnetic coupling was significantly enhanced,featured by the increase of Néel temperature from 428 K to 646 K,and by one order of enhancement of SHG intensity contributed from the G-type antiferromagnetic order by strain manipulation from-2.4%to+0.6%.We attributed the enhancement of the antiferromagnetic coupling to the enhancement of the superexchange interaction as the Fe-O-Fe bond angle approaches 180°when the in-plane lattice constants increase,which might also result in a tendency from a non-collinear antiferromagnetic order to a collinear one.Our work not only bridges the antiferromagnetic order and the strain manipulation in epitaxial multiferroics,more importantly,also paves a way for quantitative characterization by SHG technology and the precise manipulation of antiferromagnetism.
文摘为实现鳗败血假单胞菌(Pseudomonas anguilliseptica,PA)早期感染的快速诊断,基于recA基因建立了2种检测方法:SYBR Green I实时荧光定量PCR(SYBR Green I real-time quantitative PCR)和重组酶介导等温扩增结合侧流层析试纸条(Recombinase-mediated isothermal amplification combined with lateral flow dipstick,RAA-LFD)。以PA的管家基因recA为靶标,设计筛选出1对qPCR特异性引物、1对RAA特异性引物和RAA探针,并通过同源重组构建标准品质粒pUC18-recA,以建立2种检测方法。将所建立的方法应用于PA感染的大口黑鲈(Micropterus salmoides)组织样本检测,并测定PA载量。结果表明,建立的qPCR方法最低DNA检测浓度为2.816×10^(2)拷贝·μL^(-1),模板量与Ct值在构建的标准曲线中呈现良好的线性关系(r^(2)=0.9992),且具有较强的特异性和较高的稳定性;RAA-LFD方法的最低DNA检测浓度为2.816×10^(4)拷贝·μL^(-1),检测时间最快可达15 min,显色较为稳定且特异性强。应用结果显示,qPCR和RAALFD方法的阳性样本检出率分别为87.50%和85.00%,较普通PCR方法明显提高;其中,qPCR方法可准确测定PA感染宿主组织中的菌体载量,肾中的载量最高,达3.533×10^(7)拷贝·ng^(-1)。建立的2种方法特异性均较好,其中qPCR方法灵敏性更高,RAA-LFD方法则时效性更强,均可用于PA早期感染的检测,且qPCR方法还可对感染宿主体内的菌体载量进行定量分析。
基金supported by National Natural Science Foundation of China(32302371 to Junbin Chen)the National Key Research and Development Program,Ministry of Science and Technology of China(2022YFD1201802 to Wangsheng Zhu)Research Program from State Key Laboratory of Maize Biobreeding(SKLMB2424 to Wangsheng Zhu).
文摘Pythium stalk rot(PSR)is a destructive disease of maize,severely affecting yield and grain quality.The identification of quantitative trait loci(QTL)or genes for resistance to PSR forms the basis of diseaseresistant hybrids breeding.In this study,a major QTL,Resistance to Pythium stalk rot 1(RPSR1),was identified from a set of recombinant inbred lines derived from MS71 and POP.Using a recombinant progeny testing strategy,RPSR1 was fine-mapped in a 472 kb interval.Through candidate gene expression,gene knock-down and knock-out studies,a leucine-rich repeat receptor-like kinase gene,PEP RECEPTOR 2(ZmPEPR2),was assigned as a PSR resistance gene.These results provide insights into the genetic architecture of resistance to PSR in maize,which should facilitate breeding maize for resistance to stalk rot.
基金funded by the National Natural Scientific Foundation of China(Nos.52304008,52404038,52474043)the China Postdoctoral Science Foundation(No.2023MD734223)+1 种基金the Key Laboratory of Well Stability and Fluid&Rock Mechanics in Oil and Gas Reservoir of Shaanxi Province(No.23JS047)the Youth Talent Lifting Program of Xi'an Science and Technology Association(No.959202413078)。
文摘Supercritical CO_(2)(SC-CO_(2))fracturing stands out a promising waterless stimulation technique in the development of unconventional resources.While numerous studies have delved into the inducedfracture mechanism of SC-CO_(2),the small scale of rock samples and synthetic materials used in many studies have limited a comprehensive understanding of fracture propagation in unconventional formations.In this study,cubic tight sandstone samples with dimensions of 300 mm were employed to conduct SC-CO_(2)fractu ring experiments under true-triaxial stre ss conditions.The spatial morphology and quantitative attributes of fracture induced by water and SC-CO_(2)fracturing were compared,while the impact of in-situ stress on fracture propagation was also investigated.The results indicate that the SCCO_(2)fracturing takes approximately ten times longer than water fracturing.Furthermore,under identical stress condition,the breakdown pressure(BP)for SC-CO_(2)fracturing is nearly 25%lower than that for water fracturing.A quantitative analysis of fracture morphology reveals that water fracturing typically produces relatively simple fracture pattern,with the primary fracture distribution predominantly controlled by bedding planes.In contrast,SC-CO_(2)fracturing results in a more complex fracture morphology.As the differential of horizontal principal stress increases,the BP for SC-CO_(2)fractured rock exhibits a downward trend,and the induced fracture morphology becomes more simplified.Moreover,the presence of abnormal in-situ stress leads to a further increase in the BP for SC-CO_(2)fracturing,simultaneously enhancing the development of a more conductive fracture network.These findings provide critical insights into the efficiency and behavior of SC-CO_(2)fracturing in comparison to traditional water-based fracturing,offering valuable implication for its potential applications in unconventional reservoirs.
基金the National Natural Science Foundation of China(No.12174229 and 22375117)Natural Science Foundation of Shandong Province(No.ZR2022YQ02 and ZR2023MB149)Taishan Scholars Program of Shandong Province(No.tsqn202306152)for financial support.
文摘Quantitative detection of trace small-sized nanoplastics(<100 nm)remains a significant challenge in surface-enhanced Raman scattering(SERS).To tackle this issue,we developed a hydrophobic CuO@Ag nanowire substrate and introduced a multiplex-feature analysis strategy based on the coffee ring effect.This substrate not only offers high Raman enhancement but also exhibits a high probability of detection(POD),enabling rapid and accurate identification of 50 nm polystyrene nanoplastics over a broad concentration range(1–10−10 wt%).Importantly,experimental results reveal a strong correlation between the coffee ring formation and the concentration of nanoplastic dispersion.By incorporating Raman signal intensity,coffee ring diameter,and POD as combined features,we established a machine learning-based mapping between nanoplastic concentration and coffee ring characteristics,allowing precise predictions of dispersion concentration.The mean squared error of these predictions is remarkably low,ranging from 0.21 to 0.54,representing a 19 fold improvement in accuracy compared to traditional linear regression-based methods.This strategy effectively integrates SERS with wettability modification techniques,ensuring high sensitivity and fingerprinting capabilities,while addressing the limitations of Raman signal intensity in accurately reflecting concentration changes at ultra-low levels,providing a new idea for precise SERS measurements of nanoplastics.
基金supported by the grant from the National Natural Science Foundation of China(No.72071019)grant from the Natural Science Foundation of Chongqing(No.cstc2021jcyj-msxmX0185).
文摘Bone age assessment(BAA)aims to determine whether a child’s growth and development are normal concerning their chronological age.To predict bone age more accurately based on radiographs,and for the left-hand X-ray images of different races model can have better adaptability,we propose a neural network in parallel with the quantitative features from the left-hand bone measurements for BAA.In this study,a lightweight feature extractor(LFE)is designed to obtain the featuremaps fromradiographs,and amodule called attention erasermodule(AEM)is proposed to capture the fine-grained features.Meanwhile,the dimensional information of the metacarpal parts in the radiographs is measured to enhance the model’s generalization capability across images fromdifferent races.Ourmodel is trained and validated on the RSNA,RHPE,and digital hand atlas datasets,which include images from various racial groups.The model achieves a mean absolute error(MAE)of 4.42 months on the RSNA dataset and 15.98 months on the RHPE dataset.Compared to ResNet50,InceptionV3,and several state-of-the-art methods,our proposed method shows statistically significant improvements(p<0.05),with a reduction in MAE by 0.2±0.02 years across different racial datasets.Furthermore,t-tests on the features also confirm the statistical significance of our approach(p<0.05).
文摘Risk management often plays an important role in decision making un-der uncertainty.In quantitative risk management,assessing and optimizing risk metrics requires eficient computing techniques and reliable theoretical guarantees.In this pa-per,we introduce several topics on quantitative risk management and review some of the recent studies and advancements on the topics.We consider several risk metrics and study decision models that involve the metrics,with a main focus on the related com-puting techniques and theoretical properties.We show that stochastic optimization,as a powerful tool,can be leveraged to effectively address these problems.
基金National Natural Science Foundation of China(12072166)Inner Mongolia Autonomous Region Science and Technology Plan Project(2021GG0254)+2 种基金Supported by Key Laboratory of Infinite-Dimensional Hamiltonian System and Its Algorithm Application(Inner Mongolia Normal University),Ministry of Education(2023KFZD02)Inner Mongolia Autonomous Region Applied Mathematics Center Independent Research Key Project(ZZYJZD2022002)Inner Mongolia Autonomous Region Universities Basic Scientific Business Fee Research Project(JY20220075)。
文摘Mg-4.8Zn-0.8Y,Mg-18Zn-3Y,Mg-15Zn-5Y,Mg-30Zn-5Y and Mg-42Zn-7Y(wt%)alloys containing icosahedral quasicrystalline phases were prepared using the ordinary solidification method.The impact of Mg matrix porosity on the tensile strength and hardness of the alloys was studied.The porosity of the Mg matrix was quantitatively assessed using scanning electron microscope and Image-Pro Plus 6.0 software.Tensile tests were conducted at room temperature.Results show that the maximum tensile strength of the alloy is 175.56 MPa,with a corresponding Mg matrix porosity of 76.74%.Through fitting analysis,it is determined that the maximum tensile strength is achieved when the porosity of the Mg matrix is 64.87%.The microhardness test results indicate a gradual decrease in alloy hardness with increasing the porosity of Mg matrix.This study provides an effective quantitative analysis method for enhancing the mechanical properties of magnesium alloys.
文摘Creutzfeldt-Jakob disease(CJD)is a rare neurodegenerative disorder characterized by abnormalities in the prion protein(PrP),the most common form of human prion disease.Although Genome-Wide Association Studies(GWAS)have identified numerous risk genes for CJD,the mechanisms underlying these risk loci remain poorly understood.This study aims to elucidate novel genetically prioritized candidate proteins associated with CJD in the human brain through an integrative analytical pipeline.Utilizing datasets from Protein Quantitative Trait Loci(pQTL)(NpQTL1=152,NpQTL2=376),expression QTL(eQTL)(N=452),and the CJD GWAS(NCJD=4110,NControls=13569),we implemented a systematic analytical pipeline.This pipeline included Proteome-Wide Association Study(PWAS),Mendelian randomization(MR),Bayesian colocalization,and Transcriptome-Wide Association Study(TWAS)to identify novel genetically prioritized candidate proteins implicated in CJD pathogenesis within the brain.Through PWAS,we identified that the altered abundance of six brain proteins was significantly associated with CJD.Two genes,STX6 and PDIA4,were established as lead causal genes for CJD,supported by robust evidence(False Discovery Rate<0.05 in MR analysis;PP4/(PP3+PP4)≥0.75 in Bayesian colocalization).Specifically,elevated levels of STX6 and PDIA4 were associated with an increased risk of CJD.Additionally,TWAS demonstrated that STX6 and PDIA4 were associated with CJD at the transcriptional level.
基金supported by the National Natural Science Foundation of China(Grant No.12372233)the Fund of NPU-Duke China Seed Program(Grant No.119003067)the“111 Project”of China(Grant No.B17037-106).
文摘The concept of local shock strength and a quantitative measure index str of local shock strength are proposed,derived from the oblique shock relation and the monotonic relationship between total pressure loss ratio and normal Mach number.Utilizing the high density gradient characteristic of shock waves and the oblique shock relation,a post-processing algorithm for two-dimensional flow field data is developed.The objective of the post-processing algorithm is to obtain specific shock wave location coordinates and calculate the corresponding str from flow filed data under the calibration of the oblique shock relation.Valida-tion of this post-processing algorithm is conducted using a standard model example that can be solved analytically.Combining the concept of local shock strength with the post-processing algorithm,a local shock strength quantitative mapping approach is established for the first time.This approach enables a quantitative measure and visualization of local shock strength at distinct locations,represented by color mapping on the shock structures.The approach can be applied to post-processing numerical sim-ulation data of two-dimensional flows.Applications to the intersection of two left-running oblique shock waves(straight shock waves),the bow shock in front of a cylinder(curved shock wave),and Mach reflection(mixed straight and curved shock waves)demonstrate the accuracy,and effectiveness of the mapping approach in investigating diverse shock wave phenomena.The quan-titative mapping approach of str may be a valuable tool in the design of supersonic/hypersonic vehicles and the exploration of shock wave evolution.
文摘This paper reviews the history and lessons of global oil crises while exploring the establishment of a quantitative evaluation model for oil security with Chinese characteristics.Using principal component analysis,it constructs an oil security evaluation indicator system for China with two main-level indicators:foreign oil dependency and its impacts,and market intervention and security assurance.
基金supported by the Shanghai Sailing Program,China(Grant No.:23YF1413300).
文摘Quantitative structure-retention relationship(QSRR)is an important tool in chromatography.QSRR examines the correlation between molecular structures and their retention behaviors during chromatographic separation.This approach involves developing models for predicting the retention time(RT)of analytes,thereby accelerating method development and facilitating compound identification.In addition,QSRR can be used to study compound retention mechanisms and support drug screening efforts.This review provides a comprehensive analysis of QSRR workflows and applications,with a special focus on the role of artificial intelligence-an area not thoroughly explored in previous reviews.Moreover,we discuss current limitations in RT prediction and propose promising solutions.Overall,this review offers a fresh perspective on future QSRR research,encouraging the development of innovative strategies that enable the diverse applications of QSRR models in chromatographic analysis.
基金Funding National Key R&D Program of China(2021YFC2501701,2021YFC2501703)Beijing Jishuitan Hospital Scientific Research Fund(QN202404)+1 种基金Beijing Municipal Health Commission(BJRITO-RDP-2023)Beijing Municipal Public Welfare Development and Reform Pilot Project for Medical Research Institutes(JYY2023-8).
文摘Objective To determine the prevalence of lumbar spondylolysis(LS)and the proportion of spondylolytic spondylolisthesis(SS)in China,and to evaluate the musculoskeletal status of patients with LS and SS.Methods Spine Computed Tomography(CT)images were collected from community populations aged 40 and above in a nationwide multi-center project.LS was diagnosed,and SS was graded by an experienced radiologist.Bone mineral density(BMD)and paraspinal muscle parameters were quantified based on CT images.Results One hundred and seventeen patients of a total of 3,317 individuals were diagnosed with LS,corresponding to a prevalence rate of 3.53%.63 of the 1,214 males(5.18%)and 54 of the 2,103 females(2.57%)were diagnosed with LS.SS occurred in 64/121 vertebrae(52.89%).BMD was not associated with LS(P=0.341).The L5 extensor paraspinal muscle density was higher in the LS group than in the non-LS group.In the LS group,patients with SS had a smaller L5 paraspinal extensor muscle cross-sectional area than those without SS(P=0.003).Conclusion The prevalence of LS in Chinese adults was 3.53%,with prevalence rates of 5.18%in males and 2.57%in females.Patients with LS have higher muscle density,whereas those with SS have smaller muscle cross-sectional areas at the L5 level.
文摘Cryptocurrency,a booming decentralised asset designed based on the blockchain architecture,is particularly important to the market at the present time by studying the volatility risk of cryptocurrencies.In this paper,we empirically analyse the volatility risk of cryptocurrencies through quantitative analysis models,comprehensively using the Markov state transition GARCH model with skewed distribution(Skew-MSGARCH)and the autoregressive conditional volatility density ARJI model introducing the Poisson jump factor,and selecting the earliest developed and the most mature currency price volatility daily return series,to deeply explore the volatility risk of digital cryptocurrencies.risk.Finally,it can be seen through in-depth analyses that the expectation factor and information inducement are the main reasons leading to the exacerbation of the volatility risk of digital cryptocurrencies.It is recommended that this situation be optimised and improved in terms of the value function of digital cryptocurrencies themselves and the implementation of systematic risk management and regulatory innovation.As an important component of the digital economy,blockchain technology can effectively regulate and improve the volatility of digital cryptocurrencies under macroeconomic policies,thereby maintaining the security and stability of emerging financial markets.
基金funded by the National Natural Science Foundation of China(Grant No.31801421)the Chinese Academy of Agricultural Sciences Innovation Project(Grant No.CAAS-ASTIPIVFCAAS).
文摘Eye depth is an important agronomic trait affecting tubers'appearance,quality,and processing suitability.Hence,cultivating varieties with uniform shapes and shallow eye depth are important goals for potato breeding.In this study,based on the primary mapping of the tuber eyedepth locus using a small primary-segregating population,a large secondary-segregating population with 2100 individuals was used to map the eye-depth locus further.A major quantitative trait locus for eye-depth on chromosome 10 was identified(designated qEyd10.1)using BSAseq and traditional QTL mapping methods.The qEyd10.1 could explain 55.0%of the eye depth phenotypic variation and was further narrowed to a 309.10 kb interval using recombinant analysis.To predict candidate genes,tissue sectioning and RNA-seq of the specific tuber tissues were performed.Genes encoding members of the peroxidase superfamily with likely roles in indole acetic acid regulation were considered the most promising candidates.These results will facilitate marker-assisted selection for the shallow-eye trait in potato breeding and provide a solid basis for eye-depth gene cloning and the analysis of tuber eye-depth regulatory mechanisms.