期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Quantile Regression Estimation for Self-Exciting Threshold Integer-Valued Autoregressive Process
1
作者 LIU Chang WANG Zheqi WANG Dehui 《应用概率统计》 2025年第6期837-863,共27页
To better capture the characteristics of asymmetry and structural fluctuations observed in count time series,this study delves into the application of the quantile regression(QR)method for analyzing and forecasting no... To better capture the characteristics of asymmetry and structural fluctuations observed in count time series,this study delves into the application of the quantile regression(QR)method for analyzing and forecasting nonlinear integer-valued time series exhibiting a piecewise phenomenon.Specifically,we focus on the parameter estimation in the first-order Self-Exciting Threshold Integer-valued Autoregressive(SETINAR(2,1))process with symmetry,asymmetry,and contaminated innovations.We establish the asymptotic properties of the estimator under certain regularity conditions.Monte Carlo simulations demonstrate the superior performance of the QR method compared to the conditional least squares(CLS)approach.Furthermore,we validate the robustness of the proposed method through empirical quantile regression estimation and forecasting for larceny incidents and CAD drug call counts in Pittsburgh,showcasing its effectiveness across diverse levels of data heterogeneity. 展开更多
关键词 nonlinear time series of counts jittering smoothing technique quantile regression estimation threshold integer-valued autoregressive process
在线阅读 下载PDF
Weighted quantile regression for longitudinal data using empirical likelihood 被引量:1
2
作者 YUAN XiaoHui LIN Nan +1 位作者 DONG XiaoGang LIU TianQing 《Science China Mathematics》 SCIE CSCD 2017年第1期147-164,共18页
This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile ... This paper proposes a new weighted quantile regression model for longitudinal data with weights chosen by empirical likelihood(EL). This approach efficiently incorporates the information from the conditional quantile restrictions to account for within-subject correlations. The resulted estimate is computationally simple and has good performance under modest or high within-subject correlation. The efficiency gain is quantified theoretically and illustrated via simulation and a real data application. 展开更多
关键词 empirical likelihood estimating equation influence function longitudinal data weighted quantile regression
原文传递
The kth Power Expectile Estimation and Testing 被引量:1
3
作者 Fuming Lin Yingying Jiang Yong Zhou 《Communications in Mathematics and Statistics》 SCIE CSCD 2024年第4期573-615,共43页
This paper develops the theory of the kth power expectile estimation and considers its relevant hypothesis tests for coefficients of linear regression models.We prove that the asymptotic covariance matrix of kth power... This paper develops the theory of the kth power expectile estimation and considers its relevant hypothesis tests for coefficients of linear regression models.We prove that the asymptotic covariance matrix of kth power expectile regression converges to that of quantile regression as k converges to one and hence promise a moment estimator of asymptotic matrix of quantile regression.The kth power expectile regression is then utilized to test for homoskedasticity and conditional symmetry of the data.Detailed comparisons of the local power among the kth power expectile regression tests,the quantile regression test,and the expectile regression test have been provided.When the underlying distribution is not standard normal,results show that the optimal k are often larger than 1 and smaller than 2,which suggests the general kth power expectile regression is necessary.Finally,the methods are illustrated by a real example. 展开更多
关键词 The kth power expectiles Expectiles quantileS Testing for homoskedasticity Testing for conditional symmetry Estimating asymptotic matrix of quantile regression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部