Typical feed gas mixtures used in technological and other plasmas may give rise to reaction networks involving several hundred reactions.Such chemistries are often too large to be used in full reactor simulations and ...Typical feed gas mixtures used in technological and other plasmas may give rise to reaction networks involving several hundred reactions.Such chemistries are often too large to be used in full reactor simulations and it is therefore desirable to construct reduced chemistry networks which mimic as closely as possible the behavior of the full chemistry but employ far fewer individual reactions and species.Constructed chemistries are available from the Quantemol database (QDB) and two approaches to constructing reduced chemistry from these chemistries based on (a) physical intuition and (b) sensitivity analysis of dominant reaction pathways,are explored.In doing this it is necessary to consider different pressure and power regimes.Reduced chemistry sets are presented for CF4/O2/N2/H2,for which 396 reactions and 52 species are reduced to 71 reactions and 26 species,and for pure O2,for which 45 reactions and 10 species are reduced to 34 reactions.展开更多
Computations were performed for calculating cross sections of electron impact scattering from astro-physical targets CaF, HCN and H2S at energies lower than their ionization potential. The results show that the use of...Computations were performed for calculating cross sections of electron impact scattering from astro-physical targets CaF, HCN and H2S at energies lower than their ionization potential. The results show that the use of highly accurate R-matrix method which includes all the relevant physics and chemistry of the molecule in its formalism generate features significantly different from the simple static exchange calculation. The data obtained shows interesting structures in the eigen-phase sums which may be attributed to the dissociation channel of the molecule.展开更多
文摘Typical feed gas mixtures used in technological and other plasmas may give rise to reaction networks involving several hundred reactions.Such chemistries are often too large to be used in full reactor simulations and it is therefore desirable to construct reduced chemistry networks which mimic as closely as possible the behavior of the full chemistry but employ far fewer individual reactions and species.Constructed chemistries are available from the Quantemol database (QDB) and two approaches to constructing reduced chemistry from these chemistries based on (a) physical intuition and (b) sensitivity analysis of dominant reaction pathways,are explored.In doing this it is necessary to consider different pressure and power regimes.Reduced chemistry sets are presented for CF4/O2/N2/H2,for which 396 reactions and 52 species are reduced to 71 reactions and 26 species,and for pure O2,for which 45 reactions and 10 species are reduced to 34 reactions.
文摘Computations were performed for calculating cross sections of electron impact scattering from astro-physical targets CaF, HCN and H2S at energies lower than their ionization potential. The results show that the use of highly accurate R-matrix method which includes all the relevant physics and chemistry of the molecule in its formalism generate features significantly different from the simple static exchange calculation. The data obtained shows interesting structures in the eigen-phase sums which may be attributed to the dissociation channel of the molecule.