To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical c...To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.展开更多
This paper presents a high order time discretization method by combining the semi-implicit spectral deferred correction method with energy stable linear schemes to simulate a series of phase field problems.We start wi...This paper presents a high order time discretization method by combining the semi-implicit spectral deferred correction method with energy stable linear schemes to simulate a series of phase field problems.We start with the linear scheme,which is based on the invariant energy quadratization approach and is proved to be linear unconditionally energy stable.The scheme also takes advantage of avoiding nonlinear iteration and the restriction of time step to guarantee the nonlinear system uniquely solvable.Moreover,the scheme leads to linear algebraic system to solve at each iteration,and we employ the multigrid solver to solve it efficiently.Numerical re-sults are given to illustrate that the combination of local discontinuous Galerkin(LDG)spatial discretization and the high order temporal scheme is a practical,accurate and efficient simulation tool when solving phase field problems.Namely,we can obtain high order accuracy in both time and space by solving some simple linear algebraic equations.展开更多
Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capa...Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation.展开更多
In this study,a dynamic model for an inverted pendulum system(IPS)attached to a car is created,and two different control methods are applied to control the system.The designed control algorithms aim to stabilize the p...In this study,a dynamic model for an inverted pendulum system(IPS)attached to a car is created,and two different control methods are applied to control the system.The designed control algorithms aim to stabilize the pendulum arms in the upright position and the car to reach the equilibrium position.Grey Wolf Optimization-based Linear Quadratic Regulator(GWO-LQR)and GWO-based Fuzzy LQR(FLQR)control algorithms are used in the control process.To improve the performance of the LQR and FLQR methods,the optimum values of the coefficients corresponding to the foot points of the membership functions are determined by the GWO algorithm.Both a graphic and a numerical analysis of the outcomes are provided.In the comparative analysis,it is observed that the GWO-based FLQR method reduces the settling time by 22.58% and the maximum peak value by 18.2% when evaluated in terms of the angular response of the pendulum arm.Furthermore,this approach outperformed comparable research in the literature with a settling time of 2.4 s.These findings demonstrate that the suggested GWO-based FLQR controlmethod outperforms existing literature in terms of the time required for the pendulum arm to reach equilibrium.展开更多
Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the...Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.展开更多
The cross-modal person re-identification task aims to match visible and infrared images of the same individual.The main challenges in this field arise from significant modality differences between individuals and the ...The cross-modal person re-identification task aims to match visible and infrared images of the same individual.The main challenges in this field arise from significant modality differences between individuals and the lack of high-quality cross-modal correspondence methods.Existing approaches often attempt to establish modality correspondence by extracting shared features across different modalities.However,these methods tend to focus on local information extraction and fail to fully leverage the global identity information in the cross-modal features,resulting in limited correspondence accuracy and suboptimal matching performance.To address this issue,we propose a quadratic graph matching method designed to overcome the challenges posed by modality differences through precise cross-modal relationship alignment.This method transforms the cross-modal correspondence problem into a graph matching task and minimizes the matching cost using a center search mechanism.Building on this approach,we further design a block reasoning module to uncover latent relationships between person identities and optimize the modality correspondence results.The block strategy not only improves the efficiency of updating gallery images but also enhances matching accuracy while reducing computational load.Experimental results demonstrate that our proposed method outperforms the state-of-the-art methods on the SYSU-MM01,RegDB,and RGBNT201 datasets,achieving excellent matching accuracy and robustness,thereby validating its effectiveness in cross-modal person re-identification.展开更多
Since its inception,the epsilon distribution has piqued the interest of statisticians.It has been successfully used to solve a variety of statistical problems.In this article,we propose to use the quadratic rank trans...Since its inception,the epsilon distribution has piqued the interest of statisticians.It has been successfully used to solve a variety of statistical problems.In this article,we propose to use the quadratic rank transmutation map mechanism to extend this distribution.This mechanism is not new;it was already used to improve the modeling capabilities of a number of existing distributions.For the original epsilon distribution,we expect the same benefits.As a result,we implement the transmuted epsilon distribution as a flexible three-parameter distribution with a bounded domain.We demonstrate its key features,focusing on the properties of its distributional mechanism and conducting quantile and moment analyses.Applications of the model are presented using two data sets.We also perform a regression analysis based on this distribution.展开更多
An appropriate spatial structure of a power battery supply network is crucial for the specialization and scale development of key components in new energy vehicles, accelerating the transformation and upgrade of the i...An appropriate spatial structure of a power battery supply network is crucial for the specialization and scale development of key components in new energy vehicles, accelerating the transformation and upgrade of the industry. This paper investigates the cooperative relationships among supply chain enterprises from the perspective of complex networks.Employing methodologies such as the gravity model and Moran's I analysis, it explores the spatial structural characteristics and correlation patterns of the power battery supply network in China and discusses the influencing factors using the quadratic assignment procedure,revealing the mechanisms behind the differences in the spatial distributions of the power battery supply network. The results indicate that the distribution of power battery enterprises is densely concentrated in the eastern and southern regions, whereas the western region has a sparse distribution. The spatial supply network consists of a four-tier linkage system, encompassing 135 prefecture-level cities, with Chongqing, Shanghai, Nanjing, and other cities particularly prominent. Overall, the degree of agglomeration is low, with coastal cities dominating the landscape and inland cities serving as complementary regions. Most areas are characterized as insignificant or low-high regions, and the regional linkage effect of core cities is not pronounced. There is a notable lack of significance and high spatial heterogeneity.Four types of factors—spatial factors, market factors, agglomeration economies, and innovation levels—jointly influence and shape the spatial structure of the power battery supply network.展开更多
The work comparing the Yamada-Ota and Xue models for nanoparticle flow across a stretching surface has benefits in nanotechnology,medicinal treatments,environmental engineering,renewable energy,and heat exchangers.Mos...The work comparing the Yamada-Ota and Xue models for nanoparticle flow across a stretching surface has benefits in nanotechnology,medicinal treatments,environmental engineering,renewable energy,and heat exchangers.Most published nanofluid flow models assumed constant thermal conductivity and viscosity.With such great physiognomies in mind,the novelty of this work focuses on comparing the performance of the nanofluid models,Xue,and Yamada-Ota models on a stretched sheet with variable thickness under the influence of a magnetic field and quadratic thermal radiation.The altered boundary layer equations for momentum and temperature,subject to adequate boundary conditions,are numerically solved using an optimized,efficient,and extensive bvp-4c approach.The effects of non-dimensional constraints such as magnetic field,power index of velocity,wall thickness parameter,and quadratic radiation parameter on momentum and temperature profile in the boundary layer area are analyzed thoroughly and outcomes were illustrated graphically.Additionally,the consequences of certain distinctive parameters over engineering factors are also examined and results were presented in tabular form.From the outcomes,it is seen that fluid velocity slows down in the presence of a magnetic field but the opposite nature is observed in the case of temperature profile.With a higher index of velocity,the velocity profile decreases and the temperature field elevates.It has been found that the presence of quadratic convection improves the temperature field.The outcomes of the two models are compared.The Yamada-Ota model performed far better than the Xue model in the heat transfer analysis.展开更多
Let f be a Hecke eigenform of even integral weight k for the full modular group SL_(2)(Z).Denote byλ_(f)(n)the n th normalized coefficient of f.The sum of Fourier coefficients of cusp form over the quadratic polynomi...Let f be a Hecke eigenform of even integral weight k for the full modular group SL_(2)(Z).Denote byλ_(f)(n)the n th normalized coefficient of f.The sum of Fourier coefficients of cusp form over the quadratic polynomial m^(2)+n^(2) is considered,i.e.,∑_( m^( 2)+n^( 2))≤λ^(2)_( f)(m^(2)+n^(2))=CX+O(X ^(337/491+ϵ)),here X large enough and C is a constant.展开更多
Land use sustainability is a pivotal concern in contemporary ecological protection efforts,necessitating a comprehensive understanding of the ramifications of changes in land use intensity(LUI)on ecosystem services(ES...Land use sustainability is a pivotal concern in contemporary ecological protection efforts,necessitating a comprehensive understanding of the ramifications of changes in land use intensity(LUI)on ecosystem services(ESs).Although ecological control zoning typically emphasizes ES outcomes,it tends to overlook the impacts of human activity intensity.This research focuses on the Yellow River Basin and integrates various data sources,encompassing land use,meteorological,soil,and socioeconomic data from 1980 to 2020.Using the InVEST model,quadratic polynomial fitting,and cluster analysis,this work evaluates the spatiotemporal changes and zoning characteristics of LUI and three ESs—water yield,soil conservation,and habitat quality—to explore the influence of LUI changes on ESs.The results indicate that from 1980 to 2020,LUI shows a sustained increase with considerable spatial heterogeneity,gradually intensifying from upstream to downstream areas.The interannual variability of ESs is minimal,with substantial local fluctuations but overall minor changes.LUI correlates positively with ESs.Based on regional ESs,the Yellow River Basin is categorized into four primary ecological function zones:ecological restoration,ecological pressure,ecological sustainability,and ecological conservation.Considering LUI characteristics,this categorization is further refined into six secondary function zones:ecological restoration,ecological transition,ecological overload,potential development,eco-economic carrying,and ecological conservation.This study provides a scientific foundation for land use planning and ecological conservation policy formulation within the watershed area.展开更多
The acceleration and mode transition performance are two significant performances of Adaptive Cycle Engine(ACE).However,separating the processes of acceleration and mode transition will slow down the response speed of...The acceleration and mode transition performance are two significant performances of Adaptive Cycle Engine(ACE).However,separating the processes of acceleration and mode transition will slow down the response speed of thrust.Therefore,this paper proposes a multi-mode acceleration optimization control method that simultaneously performs ACE acceleration and mode transition.Firstly,an ACE component model with inlet flow characteristics was established,and the performance before and after mode transition were analyzed.Secondly,the principle of ACE acceleration optimization was analyzed,and the Front Variable Area Bypass Injector(FVABI)and Mode Selection Valve(MSV)were adopted in the acceleration process.Finally,based on the Sequential Quadratic Programming(SQP)algorithm,considering the degradation effects of engine components,we optimize the acceleration control plan for fuel and variable geometry mechanisms.The simulation results show that at the subsonic cruise point,the ACE multi-mode acceleration optimization control method can shorten the acceleration time from idle to middle state by 30.33%,and accelerate the thrust response speed by 33.72%.When the compressor flow rate of ACE deteriorates by 2% and the high-pressure turbine efficiency deteriorates by 4%,the adaptive acceleration control plan increases the high-pressure speed by 2.13% and thrust by about 6.82%;within the flight envelope,the acceleration time is reduced by more than 25%,and the thrust response speed is increased by more than 20%.展开更多
The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chel...The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients.The Chelyshkov polynomials and their properties are employed to derive the operational matrices of integral and product.The application of these operational matrices for solving the mentioned problem is explained.The error analysis of the proposed method is investigated.Finally,some numerical examples are provided to demonstrate the efficiency of the method.展开更多
The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the ...The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the uncertain,complex,and strongly coupled non-Gaussian detection noise.As a result,there are several intractable considerations on the problem of state estimation tasks corrupted by complex non-Gaussian outliers for non-linear dynamics systems in practical application.To address these issues,a new iterated rational quadratic(RQ)kernel high-order unscented Kalman filtering(IRQHUKF)algorithm via capturing the statistics to break through the limitations of the Gaussian assumption is proposed.Firstly,the characteristic analysis of the RQ kernel is investigated in detail,which is the first attempt to carry out an exploration of the heavy-tailed characteristic and the ability on capturing highorder moments of the RQ kernel.Subsequently,the RQ kernel method is first introduced into the UKF algorithm as an error optimization criterion,termed the iterated RQ kernel-UKF(RQ-UKF)algorithm by derived analytically,which not only retains the high-order moments propagation process but also enhances the approximation capacity in the non-Gaussian noise problem for its ability in capturing highorder moments and heavy-tailed characteristics.Meanwhile,to tackle the limitations of the Gaussian distribution assumption in the linearization process of the non-linear systems,the high-order Sigma Points(SP)as a subsidiary role in propagating the state high-order statistics is devised by the moments matching method to improve the RQ-UKF.Finally,to further improve the flexibility of the IRQ-HUKF algorithm in practical application,an adaptive kernel parameter is derived analytically grounded in the Kullback-Leibler divergence(KLD)method and parametric sensitivity analysis of the RQ kernel.The simulation results demonstrate that the novel IRQ-HUKF algorithm is more robust and outperforms the existing advanced UKF with respect to the kernel method in reentry vehicle tracking scenarios under various noise environments.展开更多
The objective of this paper is to present a robust safety-critical control system based on the active disturbance rejection control approach, designed to guarantee safety even in the presence of model inaccuracies, un...The objective of this paper is to present a robust safety-critical control system based on the active disturbance rejection control approach, designed to guarantee safety even in the presence of model inaccuracies, unknown dynamics, and external disturbances. The proposed method combines control barrier functions and control Lyapunov functions with a nonlinear extended state observer to produce a robust and safe control strategy for dynamic systems subject to uncertainties and disturbances. This control strategy employs an optimization-based control, supported by the disturbance estimation from a nonlinear extended state observer. Using a quadratic programming algorithm, the controller computes an optimal, stable, and safe control action at each sampling instant. The effectiveness of the proposed approach is demonstrated through numerical simulations of a safety-critical interconnected adaptive cruise control system.展开更多
Additive Manufacturing(AM)can provide customized parts that conventional techniques fail to deliver.One important parameter in AM is the quality of the parts,as a result of the material extrusion 3D printing(3D-P)proc...Additive Manufacturing(AM)can provide customized parts that conventional techniques fail to deliver.One important parameter in AM is the quality of the parts,as a result of the material extrusion 3D printing(3D-P)procedure.This can be very important in defense-related applications,where optimum performance needs to be guaranteed.The quality of the Polyetherimide 3D-P specimens was examined by considering six control parameters,namely,infill percentage,layer height,deposition angle,travel speed,nozzle,and bed temperature.The quality indicators were the root mean square(Rq)and average(Ra)roughness,porosity,and the actual to nominal dimensional deviation.The examination was performed with optical profilometry,optical microscopy,and micro-computed tomography scanning.The Taguchi design of experiments was applied,with twenty-five runs,five levels for each control parameter,on five replicas.Two additional confirmation runs were conducted,to ensure reliability.Prediction equations were constructed to express the quality indicators in terms of the control parameters.Three modeling approaches were applied to the experimental data,to compare their efficiency,i.e.,Linear Regression Model(LRM),Reduced Quadratic Regression Model,and Quadratic Regression Model(QRM).QRM was the most accurate one,still the differences were not high even considering the simpler LRM model.展开更多
This paper presents an advanced control strategy for DC-DC buck converters utilizing Non-Minimal State Space (NMSS) representation combined with Proportional-Integral-Plus (PIP) control, optimized through Linear Quadr...This paper presents an advanced control strategy for DC-DC buck converters utilizing Non-Minimal State Space (NMSS) representation combined with Proportional-Integral-Plus (PIP) control, optimized through Linear Quadratic Regulator (LQR) design. The proposed approach leverages NMSS to eliminate the need for state observers, enhancing robustness against model mismatch and improving overall system performance. The PIP controller extends traditional PI control by incorporating additional dynamic feedback. Experimental results demonstrate that the NMSS-PIP-LQR controlled buck converter achieves excellent dynamic performance. The design procedure is fully documented, and microcontroller implementation issues are discussed.展开更多
Topological band theory has been studied for free fermions for decades,and one of the most profound physical results is the bulk-boundary correspondence.Recently a focus in topological physics is extending topological...Topological band theory has been studied for free fermions for decades,and one of the most profound physical results is the bulk-boundary correspondence.Recently a focus in topological physics is extending topological classification to mixed states.Here,we focus on Gaussian mixed states for which the modular Hamiltonians of the density matrix are quadratic free fermion models with U(1)symmetry and can be classified by topological invariants.The bulk-boundary correspondence is then manifested as stable gapless modes of the modular Hamiltonian and degenerate spectrum of the density matrix.In this article,we show that these gapless modes can be detected by the full counting statistics,mathematically described by a function introduced as F(θ).A divergent derivative atθ=πcan be used to probe the gapless modes in the modular Hamiltonian.Based on this,a topological indicator,whose quantization to unity senses topologically nontrivial mixed states,is introduced.We present the physical intuition of these results and also demonstrate these results with concrete models in both one-and two-dimensions.Our results pave the way for revealing the physical significance of topology in mixed states.展开更多
This paper explores pole placement techniques for the 4th order C1 DC-to-DC Buck converter focusing on optimizing various performance metrics. Refinements were made to existing ITAE (Integral of Time-weighted Absolute...This paper explores pole placement techniques for the 4th order C1 DC-to-DC Buck converter focusing on optimizing various performance metrics. Refinements were made to existing ITAE (Integral of Time-weighted Absolute Error) polynomials. Additionally, metrics such as IAE (Integral Absolute Error), ISE (Integral of Square Error), ITSE (Integral of Time Squared Error), a MaxMin metric as well as LQR (Linear Quadratic Regulator) were evaluated. PSO (Particle Swarm Optimization) was employed for metric optimization. Time domain response to a step disturbance input was evaluated. The design which optimized the ISE metric proved to be the best performing, followed by IAE and MaxMin (with equivalent results) and then LQR.展开更多
基金Supported by Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)+3 种基金National Natural Science Foundation of China(12301556)Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)Basic Research Plan of Shanxi Province(202203021211129)。
文摘To enhance the computational efficiency of spatio-temporally discretized phase-field models,we present a high-speed solver specifically designed for the Poisson equations,a component frequently used in the numerical computation of such models.This efficient solver employs algorithms based on discrete cosine transformations(DCT)or discrete sine transformations(DST)and is not restricted by any spatio-temporal schemes.Our proposed methodology is appropriate for a variety of phase-field models and is especially efficient when combined with flow field systems.Meanwhile,this study has conducted an extensive numerical comparison and found that employing DCT and DST techniques not only yields results comparable to those obtained via the Multigrid(MG)method,a conventional approach used in the resolution of the Poisson equations,but also enhances computational efficiency by over 90%.
基金Research of R.Guo is supported by NSFC grant No.11601490Research of Y.Xu is supported by NSFC grant No.11722112,91630207.
文摘This paper presents a high order time discretization method by combining the semi-implicit spectral deferred correction method with energy stable linear schemes to simulate a series of phase field problems.We start with the linear scheme,which is based on the invariant energy quadratization approach and is proved to be linear unconditionally energy stable.The scheme also takes advantage of avoiding nonlinear iteration and the restriction of time step to guarantee the nonlinear system uniquely solvable.Moreover,the scheme leads to linear algebraic system to solve at each iteration,and we employ the multigrid solver to solve it efficiently.Numerical re-sults are given to illustrate that the combination of local discontinuous Galerkin(LDG)spatial discretization and the high order temporal scheme is a practical,accurate and efficient simulation tool when solving phase field problems.Namely,we can obtain high order accuracy in both time and space by solving some simple linear algebraic equations.
基金the financial support from the National Key Research and Development Program of China(No.2023YFB3907001)the National Natural Science Foundation of China(Nos.U2233217,62371029)the UK Engineering and Physical Sciences Research Council(EPSRC),China(Nos.EP/M026981/1,EP/T021063/1 and EP/T024917/)。
文摘Interference significantly impacts the performance of the Global Navigation Satellite Systems(GNSS),highlighting the need for advanced interference localization technology to bolster anti-interference and defense capabilities.The Uniform Circular Array(UCA)enables concurrent estimation of the Direction of Arrival(DOA)in both azimuth and elevation.Given the paramount importance of stability and real-time performance in interference localization,this work proposes an innovative approach to reduce the complexity and increase the robustness of the DOA estimation.The proposed method reduces computational complexity by selecting a reduced number of array elements to reconstruct a non-uniform sparse array from a UCA.To ensure DOA estimation accuracy,minimizing the Cramér-Rao Bound(CRB)is the objective,and the Spatial Correlation Coefficient(SCC)is incorporated as a constraint to mitigate side-lobe.The optimization model is a quadratic fractional model,which is solved by Semi-Definite Relaxation(SDR).When the array has perturbations,the mathematical expressions for CRB and SCC are re-derived to enhance the robustness of the reconstructed array.Simulation and hardware experiments validate the effectiveness of the proposed method in estimating interference DOA,showing high robustness and reductions in hardware and computational costs associated with DOA estimation.
文摘In this study,a dynamic model for an inverted pendulum system(IPS)attached to a car is created,and two different control methods are applied to control the system.The designed control algorithms aim to stabilize the pendulum arms in the upright position and the car to reach the equilibrium position.Grey Wolf Optimization-based Linear Quadratic Regulator(GWO-LQR)and GWO-based Fuzzy LQR(FLQR)control algorithms are used in the control process.To improve the performance of the LQR and FLQR methods,the optimum values of the coefficients corresponding to the foot points of the membership functions are determined by the GWO algorithm.Both a graphic and a numerical analysis of the outcomes are provided.In the comparative analysis,it is observed that the GWO-based FLQR method reduces the settling time by 22.58% and the maximum peak value by 18.2% when evaluated in terms of the angular response of the pendulum arm.Furthermore,this approach outperformed comparable research in the literature with a settling time of 2.4 s.These findings demonstrate that the suggested GWO-based FLQR controlmethod outperforms existing literature in terms of the time required for the pendulum arm to reach equilibrium.
基金supported by the Liaoning Revitalization Talents Program(XLYC2203148)
文摘Dear Editor,This letter presents a joint probabilistic scheduling and resource allocation method(PSRA) for 5G-based wireless networked control systems(WNCSs). As a control-aware optimization method, PSRA minimizes the linear quadratic Gaussian(LQG) control cost of WNCSs by optimizing the activation probability of subsystems, the number of uplink repetitions, and the durations of uplink and downlink phases. Simulation results show that PSRA achieves smaller LQG control costs than existing works.
文摘The cross-modal person re-identification task aims to match visible and infrared images of the same individual.The main challenges in this field arise from significant modality differences between individuals and the lack of high-quality cross-modal correspondence methods.Existing approaches often attempt to establish modality correspondence by extracting shared features across different modalities.However,these methods tend to focus on local information extraction and fail to fully leverage the global identity information in the cross-modal features,resulting in limited correspondence accuracy and suboptimal matching performance.To address this issue,we propose a quadratic graph matching method designed to overcome the challenges posed by modality differences through precise cross-modal relationship alignment.This method transforms the cross-modal correspondence problem into a graph matching task and minimizes the matching cost using a center search mechanism.Building on this approach,we further design a block reasoning module to uncover latent relationships between person identities and optimize the modality correspondence results.The block strategy not only improves the efficiency of updating gallery images but also enhances matching accuracy while reducing computational load.Experimental results demonstrate that our proposed method outperforms the state-of-the-art methods on the SYSU-MM01,RegDB,and RGBNT201 datasets,achieving excellent matching accuracy and robustness,thereby validating its effectiveness in cross-modal person re-identification.
文摘Since its inception,the epsilon distribution has piqued the interest of statisticians.It has been successfully used to solve a variety of statistical problems.In this article,we propose to use the quadratic rank transmutation map mechanism to extend this distribution.This mechanism is not new;it was already used to improve the modeling capabilities of a number of existing distributions.For the original epsilon distribution,we expect the same benefits.As a result,we implement the transmuted epsilon distribution as a flexible three-parameter distribution with a bounded domain.We demonstrate its key features,focusing on the properties of its distributional mechanism and conducting quantile and moment analyses.Applications of the model are presented using two data sets.We also perform a regression analysis based on this distribution.
基金Humanities and Social Sciences Project of the Ministry of Education of China,No.23YJCZH195Scientific Research Program funded by the Shaanxi Provincial Education Department,No.20JK0358, No.21JK0908+2 种基金Natural Science Basic Research Program of Shaanxi,No.2024JC-YBQN-0738, No.2023-JC-QN-0560Shaanxi Provincial Education Science Planning Project,No.SGH23Y2484China Logistics Society&China Federation of Logistics and Purchasing Research Fund,No.2023CSLKT3-220。
文摘An appropriate spatial structure of a power battery supply network is crucial for the specialization and scale development of key components in new energy vehicles, accelerating the transformation and upgrade of the industry. This paper investigates the cooperative relationships among supply chain enterprises from the perspective of complex networks.Employing methodologies such as the gravity model and Moran's I analysis, it explores the spatial structural characteristics and correlation patterns of the power battery supply network in China and discusses the influencing factors using the quadratic assignment procedure,revealing the mechanisms behind the differences in the spatial distributions of the power battery supply network. The results indicate that the distribution of power battery enterprises is densely concentrated in the eastern and southern regions, whereas the western region has a sparse distribution. The spatial supply network consists of a four-tier linkage system, encompassing 135 prefecture-level cities, with Chongqing, Shanghai, Nanjing, and other cities particularly prominent. Overall, the degree of agglomeration is low, with coastal cities dominating the landscape and inland cities serving as complementary regions. Most areas are characterized as insignificant or low-high regions, and the regional linkage effect of core cities is not pronounced. There is a notable lack of significance and high spatial heterogeneity.Four types of factors—spatial factors, market factors, agglomeration economies, and innovation levels—jointly influence and shape the spatial structure of the power battery supply network.
基金supported by the National Research Foundation,Korea(Grant No.NRF2022-R1A2C2002799)support provided by the German Jordanian University,Amman,Jordan,is greatly acknowledged by the authors.Ulavathi Shettar Mahabaleshwar wishes to thank Sang Woo Joo,School of Mechanical Engineering,Yeungnam University,Gyeongsan,Korea,for his hospitality.
文摘The work comparing the Yamada-Ota and Xue models for nanoparticle flow across a stretching surface has benefits in nanotechnology,medicinal treatments,environmental engineering,renewable energy,and heat exchangers.Most published nanofluid flow models assumed constant thermal conductivity and viscosity.With such great physiognomies in mind,the novelty of this work focuses on comparing the performance of the nanofluid models,Xue,and Yamada-Ota models on a stretched sheet with variable thickness under the influence of a magnetic field and quadratic thermal radiation.The altered boundary layer equations for momentum and temperature,subject to adequate boundary conditions,are numerically solved using an optimized,efficient,and extensive bvp-4c approach.The effects of non-dimensional constraints such as magnetic field,power index of velocity,wall thickness parameter,and quadratic radiation parameter on momentum and temperature profile in the boundary layer area are analyzed thoroughly and outcomes were illustrated graphically.Additionally,the consequences of certain distinctive parameters over engineering factors are also examined and results were presented in tabular form.From the outcomes,it is seen that fluid velocity slows down in the presence of a magnetic field but the opposite nature is observed in the case of temperature profile.With a higher index of velocity,the velocity profile decreases and the temperature field elevates.It has been found that the presence of quadratic convection improves the temperature field.The outcomes of the two models are compared.The Yamada-Ota model performed far better than the Xue model in the heat transfer analysis.
基金Supported in part by the Natural Science Foundation of Henan Youth Foundation(Grant No.222300420034)National Natural Science Foundation of China(Grant No.11871193).
文摘Let f be a Hecke eigenform of even integral weight k for the full modular group SL_(2)(Z).Denote byλ_(f)(n)the n th normalized coefficient of f.The sum of Fourier coefficients of cusp form over the quadratic polynomial m^(2)+n^(2) is considered,i.e.,∑_( m^( 2)+n^( 2))≤λ^(2)_( f)(m^(2)+n^(2))=CX+O(X ^(337/491+ϵ)),here X large enough and C is a constant.
基金National Natural Science Foundation of China,No.42101258Natural Science Foundation of Shandong Province,No.ZR2024MD073+1 种基金The Humanities and Social Sciences Youth FoundationMinistry of Education,No.19YJCZH144。
文摘Land use sustainability is a pivotal concern in contemporary ecological protection efforts,necessitating a comprehensive understanding of the ramifications of changes in land use intensity(LUI)on ecosystem services(ESs).Although ecological control zoning typically emphasizes ES outcomes,it tends to overlook the impacts of human activity intensity.This research focuses on the Yellow River Basin and integrates various data sources,encompassing land use,meteorological,soil,and socioeconomic data from 1980 to 2020.Using the InVEST model,quadratic polynomial fitting,and cluster analysis,this work evaluates the spatiotemporal changes and zoning characteristics of LUI and three ESs—water yield,soil conservation,and habitat quality—to explore the influence of LUI changes on ESs.The results indicate that from 1980 to 2020,LUI shows a sustained increase with considerable spatial heterogeneity,gradually intensifying from upstream to downstream areas.The interannual variability of ESs is minimal,with substantial local fluctuations but overall minor changes.LUI correlates positively with ESs.Based on regional ESs,the Yellow River Basin is categorized into four primary ecological function zones:ecological restoration,ecological pressure,ecological sustainability,and ecological conservation.Considering LUI characteristics,this categorization is further refined into six secondary function zones:ecological restoration,ecological transition,ecological overload,potential development,eco-economic carrying,and ecological conservation.This study provides a scientific foundation for land use planning and ecological conservation policy formulation within the watershed area.
基金supported in part by the National Natural Science Foundation of China(No.52372389)the Jiangsu Province Excellent Postdoctoral Program of China(No.2023ZB494)+1 种基金the Basic Research Program of Jiangsu Province,China(No.BK20241412)the National Science Foundation for Post-doctoral Scientists of China(No.2024M754131)。
文摘The acceleration and mode transition performance are two significant performances of Adaptive Cycle Engine(ACE).However,separating the processes of acceleration and mode transition will slow down the response speed of thrust.Therefore,this paper proposes a multi-mode acceleration optimization control method that simultaneously performs ACE acceleration and mode transition.Firstly,an ACE component model with inlet flow characteristics was established,and the performance before and after mode transition were analyzed.Secondly,the principle of ACE acceleration optimization was analyzed,and the Front Variable Area Bypass Injector(FVABI)and Mode Selection Valve(MSV)were adopted in the acceleration process.Finally,based on the Sequential Quadratic Programming(SQP)algorithm,considering the degradation effects of engine components,we optimize the acceleration control plan for fuel and variable geometry mechanisms.The simulation results show that at the subsonic cruise point,the ACE multi-mode acceleration optimization control method can shorten the acceleration time from idle to middle state by 30.33%,and accelerate the thrust response speed by 33.72%.When the compressor flow rate of ACE deteriorates by 2% and the high-pressure turbine efficiency deteriorates by 4%,the adaptive acceleration control plan increases the high-pressure speed by 2.13% and thrust by about 6.82%;within the flight envelope,the acceleration time is reduced by more than 25%,and the thrust response speed is increased by more than 20%.
文摘The main purpose of this paper is to use the Chelyshkov-collocation spectral method for solving nonlinear Quadratic integral equations of Volterra type.The method is based on the approximate solutions in terms of Chelyshkov polynomials with unknown coefficients.The Chelyshkov polynomials and their properties are employed to derive the operational matrices of integral and product.The application of these operational matrices for solving the mentioned problem is explained.The error analysis of the proposed method is investigated.Finally,some numerical examples are provided to demonstrate the efficiency of the method.
基金supported by the National Natural Science Foundation of China under Grant No.12072090.
文摘The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the uncertain,complex,and strongly coupled non-Gaussian detection noise.As a result,there are several intractable considerations on the problem of state estimation tasks corrupted by complex non-Gaussian outliers for non-linear dynamics systems in practical application.To address these issues,a new iterated rational quadratic(RQ)kernel high-order unscented Kalman filtering(IRQHUKF)algorithm via capturing the statistics to break through the limitations of the Gaussian assumption is proposed.Firstly,the characteristic analysis of the RQ kernel is investigated in detail,which is the first attempt to carry out an exploration of the heavy-tailed characteristic and the ability on capturing highorder moments of the RQ kernel.Subsequently,the RQ kernel method is first introduced into the UKF algorithm as an error optimization criterion,termed the iterated RQ kernel-UKF(RQ-UKF)algorithm by derived analytically,which not only retains the high-order moments propagation process but also enhances the approximation capacity in the non-Gaussian noise problem for its ability in capturing highorder moments and heavy-tailed characteristics.Meanwhile,to tackle the limitations of the Gaussian distribution assumption in the linearization process of the non-linear systems,the high-order Sigma Points(SP)as a subsidiary role in propagating the state high-order statistics is devised by the moments matching method to improve the RQ-UKF.Finally,to further improve the flexibility of the IRQ-HUKF algorithm in practical application,an adaptive kernel parameter is derived analytically grounded in the Kullback-Leibler divergence(KLD)method and parametric sensitivity analysis of the RQ kernel.The simulation results demonstrate that the novel IRQ-HUKF algorithm is more robust and outperforms the existing advanced UKF with respect to the kernel method in reentry vehicle tracking scenarios under various noise environments.
基金supported by the Fondo para el Primer Proyecto of the Comitépara el Desarrollo de la Investigación(CODI)at the Universidad de Antioquia(Grant Number PRV2024-78509)。
文摘The objective of this paper is to present a robust safety-critical control system based on the active disturbance rejection control approach, designed to guarantee safety even in the presence of model inaccuracies, unknown dynamics, and external disturbances. The proposed method combines control barrier functions and control Lyapunov functions with a nonlinear extended state observer to produce a robust and safe control strategy for dynamic systems subject to uncertainties and disturbances. This control strategy employs an optimization-based control, supported by the disturbance estimation from a nonlinear extended state observer. Using a quadratic programming algorithm, the controller computes an optimal, stable, and safe control action at each sampling instant. The effectiveness of the proposed approach is demonstrated through numerical simulations of a safety-critical interconnected adaptive cruise control system.
文摘Additive Manufacturing(AM)can provide customized parts that conventional techniques fail to deliver.One important parameter in AM is the quality of the parts,as a result of the material extrusion 3D printing(3D-P)procedure.This can be very important in defense-related applications,where optimum performance needs to be guaranteed.The quality of the Polyetherimide 3D-P specimens was examined by considering six control parameters,namely,infill percentage,layer height,deposition angle,travel speed,nozzle,and bed temperature.The quality indicators were the root mean square(Rq)and average(Ra)roughness,porosity,and the actual to nominal dimensional deviation.The examination was performed with optical profilometry,optical microscopy,and micro-computed tomography scanning.The Taguchi design of experiments was applied,with twenty-five runs,five levels for each control parameter,on five replicas.Two additional confirmation runs were conducted,to ensure reliability.Prediction equations were constructed to express the quality indicators in terms of the control parameters.Three modeling approaches were applied to the experimental data,to compare their efficiency,i.e.,Linear Regression Model(LRM),Reduced Quadratic Regression Model,and Quadratic Regression Model(QRM).QRM was the most accurate one,still the differences were not high even considering the simpler LRM model.
文摘This paper presents an advanced control strategy for DC-DC buck converters utilizing Non-Minimal State Space (NMSS) representation combined with Proportional-Integral-Plus (PIP) control, optimized through Linear Quadratic Regulator (LQR) design. The proposed approach leverages NMSS to eliminate the need for state observers, enhancing robustness against model mismatch and improving overall system performance. The PIP controller extends traditional PI control by incorporating additional dynamic feedback. Experimental results demonstrate that the NMSS-PIP-LQR controlled buck converter achieves excellent dynamic performance. The design procedure is fully documented, and microcontroller implementation issues are discussed.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406702)the Innovation Program for Quantum Science and Technology 2021ZD0302005+1 种基金the XPLORER Prizepartly supported by the Start-up Research Fund of Southeast University(RF1028624190)。
文摘Topological band theory has been studied for free fermions for decades,and one of the most profound physical results is the bulk-boundary correspondence.Recently a focus in topological physics is extending topological classification to mixed states.Here,we focus on Gaussian mixed states for which the modular Hamiltonians of the density matrix are quadratic free fermion models with U(1)symmetry and can be classified by topological invariants.The bulk-boundary correspondence is then manifested as stable gapless modes of the modular Hamiltonian and degenerate spectrum of the density matrix.In this article,we show that these gapless modes can be detected by the full counting statistics,mathematically described by a function introduced as F(θ).A divergent derivative atθ=πcan be used to probe the gapless modes in the modular Hamiltonian.Based on this,a topological indicator,whose quantization to unity senses topologically nontrivial mixed states,is introduced.We present the physical intuition of these results and also demonstrate these results with concrete models in both one-and two-dimensions.Our results pave the way for revealing the physical significance of topology in mixed states.
文摘This paper explores pole placement techniques for the 4th order C1 DC-to-DC Buck converter focusing on optimizing various performance metrics. Refinements were made to existing ITAE (Integral of Time-weighted Absolute Error) polynomials. Additionally, metrics such as IAE (Integral Absolute Error), ISE (Integral of Square Error), ITSE (Integral of Time Squared Error), a MaxMin metric as well as LQR (Linear Quadratic Regulator) were evaluated. PSO (Particle Swarm Optimization) was employed for metric optimization. Time domain response to a step disturbance input was evaluated. The design which optimized the ISE metric proved to be the best performing, followed by IAE and MaxMin (with equivalent results) and then LQR.