In this paper, we consider the socalled k-coloring problem in general case.Firstly, a special quadratic 0-1 programming is constructed to formulate k-coloring problem. Secondly, by use of the equivalence between above...In this paper, we consider the socalled k-coloring problem in general case.Firstly, a special quadratic 0-1 programming is constructed to formulate k-coloring problem. Secondly, by use of the equivalence between above quadratic0-1 programming and its relaxed problem, k-coloring problem is converted intoa class of (continuous) nonconvex quadratic programs, and several theoreticresults are also introduced. Thirdly, linear programming approximate algorithmis quoted and verified for this class of nonconvex quadratic programs. Finally,examining problems which are used to test the algorithm are constructed andsufficient computation experiments are reported.展开更多
The paper presents a technique for solving the binary linear programming model in polynomial time. The general binary linear programming problem is transformed into a convex quadratic programming problem. The convex q...The paper presents a technique for solving the binary linear programming model in polynomial time. The general binary linear programming problem is transformed into a convex quadratic programming problem. The convex quadratic programming problem is then solved by interior point algorithms. This settles one of the open problems of whether P = NP or not. The worst case complexity of interior point algorithms for the convex quadratic problem is polynomial. It can also be shown that every liner integer problem can be converted into binary linear problem.展开更多
A matrix splitting method is presented for minimizing a quadratic programming (QP) problem, and a general algorithm is designed to solve the QP problem and generates a sequence of iterative points. We prove that the s...A matrix splitting method is presented for minimizing a quadratic programming (QP) problem, and a general algorithm is designed to solve the QP problem and generates a sequence of iterative points. We prove that the sequence generated by the algorithm converges to the optimal solution and has an R-linear rate of convergence if the QP problem is strictly convex and nondegenerate, and that every accumulation point of the sequence generated by the general algorithm is a KKT point of the original problem under the hypothesis that the value of the objective function is bounded below on the constrained region, and that the sequence converges to a KKT point if the problem is nondegenerate and the constrained region is bounded.展开更多
A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle ...A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.展开更多
In this paper a class of iterative methods for the minimax problem i; proposed.We present a sequence of the extented linear-quadratic programming (ELQP) problems as subproblems of the original minimal problem and solv...In this paper a class of iterative methods for the minimax problem i; proposed.We present a sequence of the extented linear-quadratic programming (ELQP) problems as subproblems of the original minimal problem and solve the ELQP problem iteratively.The locally linear and su-perlinear convergence results of the algorithm are established.展开更多
文摘In this paper, we consider the socalled k-coloring problem in general case.Firstly, a special quadratic 0-1 programming is constructed to formulate k-coloring problem. Secondly, by use of the equivalence between above quadratic0-1 programming and its relaxed problem, k-coloring problem is converted intoa class of (continuous) nonconvex quadratic programs, and several theoreticresults are also introduced. Thirdly, linear programming approximate algorithmis quoted and verified for this class of nonconvex quadratic programs. Finally,examining problems which are used to test the algorithm are constructed andsufficient computation experiments are reported.
文摘The paper presents a technique for solving the binary linear programming model in polynomial time. The general binary linear programming problem is transformed into a convex quadratic programming problem. The convex quadratic programming problem is then solved by interior point algorithms. This settles one of the open problems of whether P = NP or not. The worst case complexity of interior point algorithms for the convex quadratic problem is polynomial. It can also be shown that every liner integer problem can be converted into binary linear problem.
基金the National Natural Science Foundation of China (No.19771079)and State Key Laboratory of Scientific and Engineering Computing
文摘A matrix splitting method is presented for minimizing a quadratic programming (QP) problem, and a general algorithm is designed to solve the QP problem and generates a sequence of iterative points. We prove that the sequence generated by the algorithm converges to the optimal solution and has an R-linear rate of convergence if the QP problem is strictly convex and nondegenerate, and that every accumulation point of the sequence generated by the general algorithm is a KKT point of the original problem under the hypothesis that the value of the objective function is bounded below on the constrained region, and that the sequence converges to a KKT point if the problem is nondegenerate and the constrained region is bounded.
文摘A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.
文摘In this paper a class of iterative methods for the minimax problem i; proposed.We present a sequence of the extented linear-quadratic programming (ELQP) problems as subproblems of the original minimal problem and solve the ELQP problem iteratively.The locally linear and su-perlinear convergence results of the algorithm are established.