期刊文献+
共找到1,041篇文章
< 1 2 53 >
每页显示 20 50 100
Double Self-Attention Based Fully Connected Feature Pyramid Network for Field Crop Pest Detection
1
作者 Zijun Gao Zheyi Li +2 位作者 Chunqi Zhang Ying Wang Jingwen Su 《Computers, Materials & Continua》 2025年第6期4353-4371,共19页
Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks;however,their application in the actual agricultural production process is still challenging owing to the problems of intersp... Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks;however,their application in the actual agricultural production process is still challenging owing to the problems of interspecies similarity,multi-scale,and background complexity of pests.To address these problems,this study proposes an FD-YOLO pest target detection model.The FD-YOLO model uses a Fully Connected Feature Pyramid Network(FC-FPN)instead of a PANet in the neck,which can adaptively fuse multi-scale information so that the model can retain small-scale target features in the deep layer,enhance large-scale target features in the shallow layer,and enhance the multiplexing of effective features.A dual self-attention module(DSA)is then embedded in the C3 module of the neck,which captures the dependencies between the information in both spatial and channel dimensions,effectively enhancing global features.We selected 16 types of pests that widely damage field crops in the IP102 pest dataset,which were used as our dataset after data supplementation and enhancement.The experimental results showed that FD-YOLO’s mAP@0.5 improved by 6.8%compared to YOLOv5,reaching 82.6%and 19.1%–5%better than other state-of-the-art models.This method provides an effective new approach for detecting similar or multiscale pests in field crops. 展开更多
关键词 Pest detection YOLOv5 feature pyramid network transformer attention module
在线阅读 下载PDF
Bidirectional parallel multi-branch convolution feature pyramid network for target detection in aerial images of swarm UAVs 被引量:4
2
作者 Lei Fu Wen-bin Gu +3 位作者 Wei Li Liang Chen Yong-bao Ai Hua-lei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1531-1541,共11页
In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swa... In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs. 展开更多
关键词 Aerial images Object detection Feature pyramid networks Multi-scale feature fusion Swarm UAVs
在线阅读 下载PDF
Neighborhood fusion-based hierarchical parallel feature pyramid network for object detection 被引量:3
3
作者 Mo Lingfei Hu Shuming 《Journal of Southeast University(English Edition)》 EI CAS 2020年第3期252-263,共12页
In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid... In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy. 展开更多
关键词 computer vision deep convolutional neural network object detection hierarchical parallel feature pyramid network multi-scale feature fusion
在线阅读 下载PDF
An Improved Data-Driven Topology Optimization Method Using Feature Pyramid Networks with Physical Constraints 被引量:1
4
作者 Jiaxiang Luo Yu Li +3 位作者 Weien Zhou ZhiqiangGong Zeyu Zhang Wen Yao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期823-848,共26页
Deep learning for topology optimization has been extensively studied to reduce the cost of calculation in recent years.However,the loss function of the above method is mainly based on pixel-wise errors from the image ... Deep learning for topology optimization has been extensively studied to reduce the cost of calculation in recent years.However,the loss function of the above method is mainly based on pixel-wise errors from the image perspective,which cannot embed the physical knowledge of topology optimization.Therefore,this paper presents an improved deep learning model to alleviate the above difficulty effectively.The feature pyramid network(FPN),a kind of deep learning model,is trained to learn the inherent physical law of topology optimization itself,of which the loss function is composed of pixel-wise errors and physical constraints.Since the calculation of physical constraints requires finite element analysis(FEA)with high calculating costs,the strategy of adjusting the time when physical constraints are added is proposed to achieve the balance between the training cost and the training effect.Then,two classical topology optimization problems are investigated to verify the effectiveness of the proposed method.The results show that the developed model using a small number of samples can quickly obtain the optimization structure without any iteration,which has not only high pixel-wise accuracy but also good physical performance. 展开更多
关键词 Topology optimization deep learning feature pyramid networks finite element analysis physical constraints
在线阅读 下载PDF
Two-Layer Attention Feature Pyramid Network for Small Object Detection
5
作者 Sheng Xiang Junhao Ma +2 位作者 Qunli Shang Xianbao Wang Defu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期713-731,共19页
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les... Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors. 展开更多
关键词 Small object detection two-layer attention module small object detail enhancement module feature pyramid network
在线阅读 下载PDF
Multi-scale object detection by top-down and bottom-up feature pyramid network 被引量:14
6
作者 ZHAO Baojun ZHAO Boya +2 位作者 TANG Linbo WANG Wenzheng WU Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期1-12,共12页
While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection ... While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection of objects with multiple aspect ratios and scales is still a key problem. This paper proposes a top-down and bottom-up feature pyramid network(TDBU-FPN),which combines multi-scale feature representation and anchor generation at multiple aspect ratios. First, in order to build the multi-scale feature map, this paper puts a number of fully convolutional layers after the backbone. Second, to link neighboring feature maps, top-down and bottom-up flows are adopted to introduce context information via top-down flow and supplement suboriginal information via bottom-up flow. The top-down flow refers to the deconvolution procedure, and the bottom-up flow refers to the pooling procedure. Third, the problem of adapting different object aspect ratios is tackled via many anchor shapes with different aspect ratios on each multi-scale feature map. The proposed method is evaluated on the pattern analysis, statistical modeling and computational learning visual object classes(PASCAL VOC)dataset and reaches an accuracy of 79%, which exhibits a 1.8% improvement with a detection speed of 23 fps. 展开更多
关键词 convolutional neural network (CNN) FEATURE pyramid network (FPN) object detection deconvolution.
在线阅读 下载PDF
Hyperspectral Satellite Image Classification Based on Feature Pyramid Networks With 3D Convolution
7
作者 CHEN Cheng PENG Pan +1 位作者 TAO Wei ZHAO Hui 《Journal of Shanghai Jiaotong university(Science)》 2025年第6期1073-1084,共12页
Recent advances in convolution neural network (CNN) have fostered the progress in object recognition and semantic segmentation, which in turn has improved the performance of hyperspectral image (HSI) classification. N... Recent advances in convolution neural network (CNN) have fostered the progress in object recognition and semantic segmentation, which in turn has improved the performance of hyperspectral image (HSI) classification. Nevertheless, the difficulty of high dimensional feature extraction and the shortage of small training samples seriously hinder the future development of HSI classification. In this paper, we propose a novel algorithm for HSI classification based on three-dimensional (3D) CNN and a feature pyramid network (FPN), called 3D-FPN. The framework contains a principle component analysis, a feature extraction structure and a logistic regression. Specifically, the FPN built with 3D convolutions not only retains the advantages of 3D convolution to fully extract the spectral-spatial feature maps, but also concentrates on more detailed information and performs multi-scale feature fusion. This method avoids the excessive complexity of the model and is suitable for small sample hyperspectral classification with varying categories and spatial resolutions. In order to test the performance of our proposed 3D-FPN method, rigorous experimental analysis was performed on three public hyperspectral data sets and hyperspectral data of GF-5 satellite. Quantitative and qualitative results indicated that our proposed method attained the best performance among other current state-of-the-art end-to-end deep learning-based methods. 展开更多
关键词 hyperspectral image(HSI) deep learning feature pyramid network(FPN) spectral-spatial feature extraction
原文传递
Feature pyramid attention network for audio-visual scene classification 被引量:1
8
作者 Liguang Zhou Yuhongze Zhou +3 位作者 Xiaonan Qi Junjie Hu Tin Lun Lam Yangsheng Xu 《CAAI Transactions on Intelligence Technology》 2025年第2期359-374,共16页
Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and text... Audio-visual scene classification(AVSC)poses a formidable challenge owing to the intricate spatial-temporal relationships exhibited by audio-visual signals,coupled with the complex spatial patterns of objects and textures found in visual images.The focus of recent studies has predominantly revolved around extracting features from diverse neural network structures,inadvertently neglecting the acquisition of semantically meaningful regions and crucial components within audio-visual data.The authors present a feature pyramid attention network(FPANet)for audio-visual scene understanding,which extracts semantically significant characteristics from audio-visual data.The authors’approach builds multi-scale hierarchical features of sound spectrograms and visual images using a feature pyramid representation and localises the semantically relevant regions with a feature pyramid attention module(FPAM).A dimension alignment(DA)strategy is employed to align feature maps from multiple layers,a pyramid spatial attention(PSA)to spatially locate essential regions,and a pyramid channel attention(PCA)to pinpoint significant temporal frames.Experiments on visual scene classification(VSC),audio scene classification(ASC),and AVSC tasks demonstrate that FPANet achieves performance on par with state-of-the-art(SOTA)approaches,with a 95.9 F1-score on the ADVANCE dataset and a relative improvement of 28.8%.Visualisation results show that FPANet can prioritise semantically meaningful areas in audio-visual signals. 展开更多
关键词 dimension alignment feature pyramid attention network pyramid channel attention pyramid spatial attention semantic relevant regions
在线阅读 下载PDF
FROM UNWEIGHTED TO WEIGHTED GENERALIZED FAREY ORGANIZED TREE AND THE PYRAMID NETWORKS 被引量:1
9
作者 Yong LI·Jinqing FANG·Qiang LIU China Institute of Atomic Energy,Beijing 102413,China. 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第4期681-700,共20页
Generalized Farey tree network (GFTN) and generalized Farey organized pyramid network (CFOPN) model are proposed, and their topological characteristics are studied by both theoretical analysis and numerical simula... Generalized Farey tree network (GFTN) and generalized Farey organized pyramid network (CFOPN) model are proposed, and their topological characteristics are studied by both theoretical analysis and numerical simulations, which are in good accordance with each other. Then weighted GFTN is studied using cumulative distributions of its Farey number value, edge weight, and node strength. These results maybe helpful for future theoretical development of hybrid models. 展开更多
关键词 Generalized Farey organized pyramid network topological properties weighted generalized Farey tree network.
原文传递
PAN-DeSpeck:A Lightweight Pyramid and Attention-Based Network for SAR Image Despeckling
10
作者 Saima Yasmeen Muhammad Usman Yaseen +2 位作者 Syed Sohaib Ali Moustafa M.Nasralla Sohaib Bin Altaf Khattak 《Computers, Materials & Continua》 SCIE EI 2023年第9期3671-3689,共19页
SAR images commonly suffer fromspeckle noise,posing a significant challenge in their analysis and interpretation.Existing convolutional neural network(CNN)based despeckling methods have shown great performance in remo... SAR images commonly suffer fromspeckle noise,posing a significant challenge in their analysis and interpretation.Existing convolutional neural network(CNN)based despeckling methods have shown great performance in removing speckle noise.However,these CNN-basedmethods have a fewlimitations.They do not decouple complex background information in amulti-resolutionmanner.Moreover,they have deep network structures thatmay result in many parameters,limiting their applicability tomobile devices.Furthermore,extracting key speckle information in the presence of complex background is also a major problem with SAR.The proposed study addresses these limitations by introducing a lightweight pyramid and attention-based despeckling(PAN-Despeck)network.The primary objective is to enhance image quality and enable improved information interpretation,particularly on mobile devices and scenarios involving complex backgrounds.The PAN-Despeck network leverages domainspecific knowledge and integrates Gaussian Laplacian image pyramid decomposition for multi-resolution image analysis.By utilizing this approach,complex background information can be effectively decoupled,leading to enhanced despeckling performance.Furthermore,the attention mechanism selectively focuses on key speckle features and facilitates complex background removal.The network incorporates recursive and residual blocks to ensure computational efficiency and accelerate training speed,making it lightweight while maintaining high performance.Through comprehensive evaluations,it is demonstrated that PAN-Despeck outperforms existing image restoration methods.With an impressive average peak signal-to-noise ratio(PSNR)of 28.355114 and a remarkable structural similarity index(SSIM)of 0.905467,it demonstrates exceptional performance in effectively reducing speckle noise in SAR images.The source code for the PAN-DeSpeck network is available on GitHub. 展开更多
关键词 Synthetic Aperture Radar(SAR) SAR image despeckling speckle noise deep learning pyramid networks multiscale image despeckling
在线阅读 下载PDF
Hybrid receptive field network for small object detection on drone view 被引量:1
11
作者 Zhaodong CHEN Hongbing JI +2 位作者 Yongquan ZHANG Wenke LIU Zhigang ZHU 《Chinese Journal of Aeronautics》 2025年第2期322-338,共17页
Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones... Drone-based small object detection is of great significance in practical applications such as military actions, disaster rescue, transportation, etc. However, the severe scale differences in objects captured by drones and lack of detail information for small-scale objects make drone-based small object detection a formidable challenge. To address these issues, we first develop a mathematical model to explore how changing receptive fields impacts the polynomial fitting results. Subsequently, based on the obtained conclusions, we propose a simple but effective Hybrid Receptive Field Network (HRFNet), whose modules include Hybrid Feature Augmentation (HFA), Hybrid Feature Pyramid (HFP) and Dual Scale Head (DSH). Specifically, HFA employs parallel dilated convolution kernels of different sizes to extend shallow features with different receptive fields, committed to improving the multi-scale adaptability of the network;HFP enhances the perception of small objects by capturing contextual information across layers, while DSH reconstructs the original prediction head utilizing a set of high-resolution features and ultrahigh-resolution features. In addition, in order to train HRFNet, the corresponding dual-scale loss function is designed. Finally, comprehensive evaluation results on public benchmarks such as VisDrone-DET and TinyPerson demonstrate the robustness of the proposed method. Most impressively, the proposed HRFNet achieves a mAP of 51.0 on VisDrone-DET with 29.3 M parameters, which outperforms the extant state-of-the-art detectors. HRFNet also performs excellently in complex scenarios captured by drones, achieving the best performance on the CS-Drone dataset we built. 展开更多
关键词 Drone remote sensing Object detection on drone view Small object detector Hybrid receptive field Feature pyramid network Feature augmentation Multi-scale object detection
原文传递
Weld Defect Monitoring Based on Two-Stage Convolutional Neural Network
12
作者 XIAO Wenbo XIONG Jiakai +2 位作者 YU Lesheng HE Yinshui MA Guohong 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期291-299,共9页
Zn vapour is easily generated on the surface by fusion welding galvanized steel sheet,resulting in the formation of defects.Rapidly developing computer vision sensing technology collects weld images in the welding pro... Zn vapour is easily generated on the surface by fusion welding galvanized steel sheet,resulting in the formation of defects.Rapidly developing computer vision sensing technology collects weld images in the welding process,then obtains laser fringe information through digital image processing,identifies welding defects,and finally realizes online control of weld defects.The performance of a convolutional neural network is related to its structure and the quality of the input image.The acquired original images are labeled with LabelMe,and repeated attempts are made to determine the appropriate filtering and edge detection image preprocessing methods.Two-stage convolutional neural networks with different structures are built on the Tensorflow deep learning framework,different thresholds of intersection over union are set,and deep learning methods are used to evaluate the collected original images and the preprocessed images separately.Compared with the test results,the comprehensive performance of the improved feature pyramid networks algorithm based on the basic network VGG16 is lower than that of the basic network Resnet101.Edge detection of the image will significantly improve the accuracy of the model.Adding blur will reduce the accuracy of the model slightly;however,the overall performance of the improved algorithm is still relatively good,which proves the stability of the algorithm.The self-developed software inspection system can be used for image preprocessing and defect recognition,which can be used to record the number and location of typical defects in continuous welds. 展开更多
关键词 defects monitoring image preprocessing Resnet101 feature pyramid network
原文传递
Infrared road object detection algorithm based on spatial depth channel attention network and improved YOLOv8
13
作者 LI Song SHI Tao +1 位作者 JING Fangke CUI Jie 《Optoelectronics Letters》 2025年第8期491-498,共8页
Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm f... Aiming at the problems of low detection accuracy and large model size of existing object detection algorithms applied to complex road scenes,an improved you only look once version 8(YOLOv8)object detection algorithm for infrared images,F-YOLOv8,is proposed.First,a spatial-to-depth network replaces the traditional backbone network's strided convolution or pooling layer.At the same time,it combines with the channel attention mechanism so that the neural network focuses on the channels with large weight values to better extract low-resolution image feature information;then an improved feature pyramid network of lightweight bidirectional feature pyramid network(L-BiFPN)is proposed,which can efficiently fuse features of different scales.In addition,a loss function of insertion of union based on the minimum point distance(MPDIoU)is introduced for bounding box regression,which obtains faster convergence speed and more accurate regression results.Experimental results on the FLIR dataset show that the improved algorithm can accurately detect infrared road targets in real time with 3%and 2.2%enhancement in mean average precision at 50%IoU(mAP50)and mean average precision at 50%—95%IoU(mAP50-95),respectively,and 38.1%,37.3%and 16.9%reduction in the number of model parameters,the model weight,and floating-point operations per second(FLOPs),respectively.To further demonstrate the detection capability of the improved algorithm,it is tested on the public dataset PASCAL VOC,and the results show that F-YOLO has excellent generalized detection performance. 展开更多
关键词 feature pyramid network infrared road object detection infrared imagesf yolov backbone networks channel attention mechanism spatial depth channel attention network object detection improved YOLOv
原文传递
Deep Pyramidal Residual Network for Indoor-Outdoor Activity Recognition Based on Wearable Sensor
14
作者 Sakorn Mekruksavanich Narit Hnoohom Anuchit Jitpattanakul 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2669-2686,共18页
Recognition of human activity is one of the most exciting aspects of time-series classification,with substantial practical and theoretical impli-cations.Recent evidence indicates that activity recognition from wearabl... Recognition of human activity is one of the most exciting aspects of time-series classification,with substantial practical and theoretical impli-cations.Recent evidence indicates that activity recognition from wearable sensors is an effective technique for tracking elderly adults and children in indoor and outdoor environments.Consequently,researchers have demon-strated considerable passion for developing cutting-edge deep learning sys-tems capable of exploiting unprocessed sensor data from wearable devices and generating practical decision assistance in many contexts.This study provides a deep learning-based approach for recognizing indoor and outdoor movement utilizing an enhanced deep pyramidal residual model called Sen-PyramidNet and motion information from wearable sensors(accelerometer and gyroscope).The suggested technique develops a residual unit based on a deep pyramidal residual network and introduces the concept of a pyramidal residual unit to increase detection capability.The proposed deep learning-based model was assessed using the publicly available 19Nonsens dataset,which gathered motion signals from various indoor and outdoor activities,including practicing various body parts.The experimental findings demon-strate that the proposed approach can efficiently reuse characteristics and has achieved an identification accuracy of 96.37%for indoor and 97.25%for outdoor activity.Moreover,comparison experiments demonstrate that the SenPyramidNet surpasses other cutting-edge deep learning models in terms of accuracy and F1-score.Furthermore,this study explores the influence of several wearable sensors on indoor and outdoor action recognition ability. 展开更多
关键词 Human activity recognition deep learning wearable sensors indoor and outdoor activity deep pyramidal residual network
在线阅读 下载PDF
Image decomposition on the basis of an inverse pyramid with 3-layer neural networks 被引量:1
15
作者 Valeriy Victorovich Cherkashyn HE Dong-chen Roumen Kirilov Kountchev 《通讯和计算机(中英文版)》 2009年第11期21-29,共9页
关键词 金字塔分解 图像分解 神经网络 基础 压缩效率 信息技术 自适应方法 图像处理
在线阅读 下载PDF
基于多注意力机制的脊柱病灶MRI影像识别模型
16
作者 周慧 宋新景 《计算机科学与探索》 北大核心 2026年第1期291-300,共10页
人工检测脊柱病变是一项耗时的工作,并且高度依赖于该领域的专家,因此脊柱病灶的自动识别是非常必要的。然而,因为脊柱病灶的大小、位置和结构存在着广泛的差异,同时脊柱肿瘤与稀有病布鲁氏菌在影像上高度相似,所以脊柱病灶的准确定位... 人工检测脊柱病变是一项耗时的工作,并且高度依赖于该领域的专家,因此脊柱病灶的自动识别是非常必要的。然而,因为脊柱病灶的大小、位置和结构存在着广泛的差异,同时脊柱肿瘤与稀有病布鲁氏菌在影像上高度相似,所以脊柱病灶的准确定位和分类是一项具有挑战性的工作。为了应对这些挑战,提出了一种改进的脊柱病灶MRI影像识别模型。引入以ResNet-101为基础的双向特征金字塔主干网络,利用可变卷积在不同层替代传统的卷积神经网络,从特征层中获得更多的特征信息。在不同的模块中加入了多重注意力,包括自注意力机制和柔性注意力机制,有效地融合特征中贡献较大的部分。为了克服脊柱肿瘤、感染性病变、稀有病布鲁氏菌的数据不平衡问题,引入了改进的平衡交叉熵损失函数。在大连某医院提供的临床数据集上进行验证,识别精确率达到了94.2%,识别召回率达到90.8%。与其他识别模型进行对比实验,结果说明了该方法相对于其他模型识别性能更好。 展开更多
关键词 脊柱病灶识别 双向特征金字塔 多注意力机制 可变卷积 多特征融合
在线阅读 下载PDF
改进YOLOv8_obb的大豆主茎节点识别研究
17
作者 杨彦旭 李金阳 +2 位作者 石文强 亓立强 张伟 《中国农机化学报》 北大核心 2026年第1期79-86,共8页
大豆株型对大豆产量有重要影响,大豆主茎节数是大豆株型构成的重要性状。为实现田间条件下大豆主茎节数识别计算,以黑龙江省九三地区大豆为研究对象,提出基于YOLOv8_obb模型改进的大豆主茎节点识别方法YOLOv8_obb—AES,计算大豆主茎节点... 大豆株型对大豆产量有重要影响,大豆主茎节数是大豆株型构成的重要性状。为实现田间条件下大豆主茎节数识别计算,以黑龙江省九三地区大豆为研究对象,提出基于YOLOv8_obb模型改进的大豆主茎节点识别方法YOLOv8_obb—AES,计算大豆主茎节点,得到大豆主茎节数。改进模型引入高效注意力机制模块,缩减模型计算量,采用渐进特征金字塔网络结构替换YOLOv8_obb网络中的路径聚合特征金字塔网络,增强多尺度融合能力,替换IoU损失函数加快模型边界回归,提高模型收敛速度。结果表明,YOLOv8_obb—AES算法对田间大豆主茎节点的平均精度均值与检测速度分别达到89.45%、78.8帧/ms,相比于原始算法分别提升8.45%、7.6帧/ms,对于九研17大豆植株6种不同主茎节数的识别准确率分别为85.4%、84.5%、87.6%、85.2%、81.6%和82.2%。该研究为探究大豆产量与大豆主茎节数之间的关联提供技术支持。 展开更多
关键词 大豆 主茎节点 目标识别 渐进特征金字塔网络 高效注意力机制
在线阅读 下载PDF
Detection of Multiscale Center Point Objects Based on Parallel Network 被引量:1
18
作者 Hao Chen Hong Zheng Xiaolong Li 《Journal of Artificial Intelligence and Technology》 2021年第1期68-73,共6页
Anchor-based detectors are widely used in object detection.To improve the accuracy of object detection,multiple anchor boxes are intensively placed on the input image,yet.Most of which are invalid.Although the anchor-... Anchor-based detectors are widely used in object detection.To improve the accuracy of object detection,multiple anchor boxes are intensively placed on the input image,yet.Most of which are invalid.Although the anchor-free method can reduce the number of useless anchor boxes,the invalid ones still occupy a high proportion.On this basis,this paper proposes a multiscale center point object detection method based on parallel network to further reduce the number of useless anchor boxes.This study adopts the parallel network architecture of hourglass-104 and darknet-53 of which the first one outputs heatmaps to generate the center point for object feature location on the output attribute feature map of darknet-53.Combining feature pyramid and CIoU loss function,this algorithm is trained and tested on MSCOCO dataset,increasing the detection rate of target location and the accuracy rate of small object detection.Though resembling the state-of-the-art two-stage detectors in overall object detection accuracy,this algorithm is superior in speed. 展开更多
关键词 deep learning heatmap feature pyramid networks object detection center point
在线阅读 下载PDF
Intelligent identification of oceanic eddies in remote sensing data via Dual-Pyramid UNet 被引量:2
19
作者 Nan Zhao Baoxiang Huang +2 位作者 Xinmin Zhang Linyao Ge Ge Chen 《Atmospheric and Oceanic Science Letters》 CSCD 2023年第4期29-36,共8页
海洋涡旋是大洋中重要的组成部分,对海洋能量和物质的输送至关重要.海洋涡旋的检测和表征无论是对于海洋气象学,海洋声学还是海洋生物学等领域都具有重要的研究价值.本文基于UNet架构,并结合金字塔分割注意力(PSA)模块和空洞空间卷积池... 海洋涡旋是大洋中重要的组成部分,对海洋能量和物质的输送至关重要.海洋涡旋的检测和表征无论是对于海洋气象学,海洋声学还是海洋生物学等领域都具有重要的研究价值.本文基于UNet架构,并结合金字塔分割注意力(PSA)模块和空洞空间卷积池化金字塔(ASPP)构造了Dual-Pyramid UNet模型,以平面异常和海表面温度数据中进行海洋涡旋的识别.实验在北大西洋和南大西洋两个涡旋活跃区域进行并选用多个评价指标对识别结果进行评价以证明模型的优异性能. 展开更多
关键词 海洋涡旋识别 深度学习 金字塔分割注意 空洞空间卷积池化金字塔 U型网络架构
在线阅读 下载PDF
Improving Drought Tolerance of Rice by Designed QTL Pyramiding 被引量:13
20
作者 Z.K. Li  D. Dwivedi  +8 位作者 Y.M. Gao  T.Q. Zheng  R. Lafitte  J.L. Xu  D. Mackill  B.Y. Fu  J.Domingo  Y. Sun  L.H. Zhu 《分子植物育种》 CAS CSCD 2007年第2期205-206,共2页
Drought is the most important factor limiting rice yields in the rainfed areas of Asia. To overcome the problem, we developed a new strategy 'designed QTL pyramiding' to more effi ciently develop drought toler... Drought is the most important factor limiting rice yields in the rainfed areas of Asia. To overcome the problem, we developed a new strategy 'designed QTL pyramiding' to more effi ciently develop drought tolerant (DT) 展开更多
关键词 干旱 耐受性能 稻子 金字塔式交易法
在线阅读 下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部