期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于三阶段数据包络分析模型的苏浙沪皖经济圈医院运行效率研究 被引量:8
1
作者 田浩国 高山 杨令 《中国卫生资源》 CSCD 北大核心 2023年第1期61-65,共5页
目的分析2019年苏浙沪皖经济圈内27个城市医院运行效率,为优化苏浙沪皖卫生资源配置和规划提供参考。方法选取苏浙沪皖27个城市医院指标数据,运用三阶段数据包络分析(data envelopment analysis,DEA)模型法,在控制环境变量和剔除随机效... 目的分析2019年苏浙沪皖经济圈内27个城市医院运行效率,为优化苏浙沪皖卫生资源配置和规划提供参考。方法选取苏浙沪皖27个城市医院指标数据,运用三阶段数据包络分析(data envelopment analysis,DEA)模型法,在控制环境变量和剔除随机效应后效率分析。结果苏浙沪皖经济圈医院综合技术效率、纯技术效率和规模效率均值分别为0.941、0.948和0.992。结论苏浙沪皖经济圈内医院运行效率有所差异,环境变量对医院运行效率影响较大,对外部的资源配置存在敏感性不同的差异,应统筹区域医疗资源,提高医院运行效率。 展开更多
关键词 苏浙沪皖Jiangsu ZHEJIANG SHANGHAI ANHUI 综合技术效率comprehensive technical efficiency 纯技术效率pure technical efficiency 规模效率scale efficiency 三阶段数据包络分析three-stage data envelopment analysis
暂未订购
基于DEA-Malmquist模型的养老机构供给效率研究 被引量:10
2
作者 边妗伟 《中国卫生资源》 北大核心 2022年第5期669-674,共6页
目的 评价国内养老机构服务供给效率,了解国内养老机构服务供给现状。方法 应用数据包络分析法对2016—2020年的国内养老机构相关数据进行分析,评估国内养老机构服务供给效率。结果 2016年国内养老机构服务供给的综合技术效率、纯技术... 目的 评价国内养老机构服务供给效率,了解国内养老机构服务供给现状。方法 应用数据包络分析法对2016—2020年的国内养老机构相关数据进行分析,评估国内养老机构服务供给效率。结果 2016年国内养老机构服务供给的综合技术效率、纯技术效率和规模效率分别为0.872、0.891和0.976,2020年分别为0.940、0.959和0.980。2016—2020年全要素生产率指数均值为0.988,综合技术效率上升2.2%,纯技术效率上升2.0%,技术进步均值下降3.3%。结论 养老机构的整体管理和技术水平是影响服务供给综合技术效率的主要因素。服务供给效率省际发展不均衡,区域间服务供给效率差距有所减小。技术进步是影响养老机构服务供给效率的主要因素。建议提高对养老机构管理水平的重视程度,合理配置养老机构资源,通过加强技术研发、加强养老人才队伍建设等方式提高国内养老机构服务供给效率。 展开更多
关键词 数据包络分析data envelopment analysis DEA Malmquist指数Malmquist index 养老机构elderly care institution 供给效率supply efficiency 综合技术效率comprehensive technical efficiency 纯技术效率pure technical efficiency 规模效率scale efficiency 全要素生产率total factor productivity
在线阅读 下载PDF
Evaluating R&D efficiency of China's listed lithium battery enterprises 被引量:1
3
作者 Shizhen BAI Xinrui BI +6 位作者 Chunjia HAN Qijun ZHOU Wen-Long SHANG Mu YANG Lin WANG Petros IEROMONACHOU Hao HE 《Frontiers of Engineering Management》 2022年第3期473-485,共13页
Promoting the growth of the lithium battery sector has been a critical aspect of China's energy policy in terms of achieving carbon neutrality.However,despite significant support on research and development(R&... Promoting the growth of the lithium battery sector has been a critical aspect of China's energy policy in terms of achieving carbon neutrality.However,despite significant support on research and development(R&D)investments that have resulted in increasing size,the sector seems to be falling behind in technological areas.To guide future policies and understand proper ways of promoting R&D efficiency,we looked into the lithium battery industry of China.Specifically,data envelopment analysis(DEA)was used as the primary approach based on evidence from 22 listed lithium battery enterprises.The performance of the five leading players was compared with that of the industry as a whole.Results revealed little indication of a meaningful improvement in R&D efficiency throughout our sample from 2010 to 2019.However,during this period,a significant increase in R&D expenditure was witnessed.This finding was supported,as the results showed that the average technical efficiency of the 22 enterprises was 0.442,whereas the average pure technical efficiency was at 0.503,thus suggesting that they were suffering from decreasing returns to scale(DRS).In contrast,the performance of the five leading players seemed superior because their average efficiency scores were higher than the industry's average.Moreover,they were experiencing increasing scale efficiency(IRS).We draw on these findings to suggest to policymakers that supporting technologically intensive sectors should be more than simply increasing investment scale;rather,it should also encompass assisting businesses in developing efficient managerial processes for R&D. 展开更多
关键词 Data Envelopment Analysis R&D investment efficiency China's listed lithium battery enterprises technical efficiency pure technical efficiency scale efficiency
原文传递
Extra Resource Allocation:A DEA Approach in the View of Efficiencies
4
作者 Meng Zhang Li-Li Wang Jin-Chuan Cui 《Journal of the Operations Research Society of China》 EI CSCD 2018年第1期85-106,共22页
Data envelopment analysis has been successfully used in resource allocation problems.However,to the best of our knowledge,there are no allocation models proposed in the literature that simultaneously take both the glo... Data envelopment analysis has been successfully used in resource allocation problems.However,to the best of our knowledge,there are no allocation models proposed in the literature that simultaneously take both the global efficiency and growing potential into account.Hence,this research aims at developing an allocation model for extra input resources,which maximizes the global technical efficiency and scale efficiency of a decision-making unit(DMU)set while maintaining the pure technical efficiency(i.e.,growing potential)of each DMU.To this purpose,we first discuss the optimal resources required by each DMU.We prove that the optimal inputs for the DMU are actually the inputs of some most productive scale size(MPSS).We then propose the allocation model based on the discussion on the case of one DMU.The allocation model is illustrated using two numerical examples. 展开更多
关键词 Data envelopment analysis Global technical efficiency pure technical efficiency Scale efficiency MPSS ALLOCATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部