期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Force Compensation Control for Electro-Hydraulic Servo System with Pump-Valve Compound Drive via QFT-DTOC
1
作者 Kaixian Ba Yuan Wang +4 位作者 Xiaolong He Chunyu Wang Bin Yu Yaliang Liu Xiangdong Kong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期228-246,共19页
Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhi... Each joint of a hydraulic-driven legged robot adopts a highly integrated hydraulic drive unit(HDU),which features a high power-weight ratio.However,most HDUs are throttling-valve-controlled cylinder systems,which exhibit high energy losses.By contrast,pump control systems offer a high efficiency.Nevertheless,their response ability is unsatisfactory.To fully utilize the advantages of pump and valve control systems,in this study,a new type of pump-valve compound drive system(PCDS)is designed,which can not only effectively reduce the energy loss,but can also ensure the response speed and response accuracy of the HDUs in robot joints to satisfy the performance requirements of robots.Herein,considering the force control requirements of energy conservation,high precision,and fast response of the robot joint HDU,a nonlinear mathematical model of the PCDS force control system is first introduced.In addition,pressure-flow nonlinearity,friction nonlinearity,load complexity and variability,and other factors affecting the system are considered,and a novel force control method based on quantitative feedback theory(QFT)and a disturbance torque observer(DTO)is designed,which is denoted as QFT-DTOC herein.This method improves the control accuracy and robustness of the force control system,reduces the effect of the disturbance torque on the control performance of the servo motor,and improves the overall force control performance of the system.Finally,experimental verification is performed using the PCDS performance test platform.The experimental results and quantitative data show that the QFT-DTOC proposed herein can significantly improve the force control performance of the PCDS.The relevant force control method can be used as a bottom-control method for the hydraulic servo system to provide a foundation for implementing the top-level trajectory planning of the robot. 展开更多
关键词 Legged robot pump-valve compound drive system(PCDS) Force compensation control Quantitative feedback theory(QFT) Disturbance torque observer(DTO)
在线阅读 下载PDF
Energy-saving technologies for construction machinery:a review of electro-hydraulic pump-valve coordinated system 被引量:12
2
作者 Zhe-ming TONG Shuang-shuang WU +4 位作者 Shui-guang TONG Yu-qing YUE Yuan-song LI Zheng-yu XU Yu-wei ZHONG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第5期331-349,共19页
With the rapid development of the global economy,more and more attention has been paid to the energy conservation of construction machinery.The hydraulic system is the key component of construction machinery,and impro... With the rapid development of the global economy,more and more attention has been paid to the energy conservation of construction machinery.The hydraulic system is the key component of construction machinery,and improving its energy utilization rate has become an important means to achieve energy conservation.In conventional valve-controlled or pump-controlled hydraulic systems of construction machinery,controllability and energy-saving performance typically cannot be considered at the same time.The pump-valve coordinated system combines the energy-saving characteristics of the pump-controlled system and the high-precision and high-frequency response of the valve-controlled system,which has the potential to become a primary research direction of electro-hydraulic systems.This review summarizes the recent research progress in energy-saving technologies based on pump-valve coordinated systems.Particularly,we discuss the structures of hydraulic systems in different categories of construction machinery,various control methods of the electro-hydraulic system,novel hydraulic hybrid energy regeneration systems,and key components.In addition,future directions and challenges of the pump-valve coordinated systems are described,such as independent metering system(IMS),common pressure rail(CPR),and hybrid power source(HPS). 展开更多
关键词 Construction machinery Energy saving pump-valve coordinated systems Control algorithm Hydraulic systems
原文传递
Control method on serial type pump-valve coordinated electro-hydraulic servo system 被引量:2
3
作者 谢文 汪首坤 +1 位作者 王军政 吴建 《Journal of Beijing Institute of Technology》 EI CAS 2016年第1期100-107,共8页
In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corr... In order to compromise the conflicts between control accuracy and system efficiency of conventional electro-hydraulic servo systems,a novel pump-valve coordinated electro-hydraulic servo system was designed and a corresponding control strategy was proposed.The system was constituted of a pumpcontrolled part and a valve-controlled part,the pump controlled part is used to adjust the flow rate of oil source and the valve controlled part is used to complete the position tracking control of the hydraulic cylinder.Based on the system characteristics,a load flow grey prediction method was adopted in the pump controlled part to reduce the system overflow losses,and an adaptive robust control method was adopted in the valve controlled part to eliminate the effect of system nonlinearity and parametric uncertainties due to variable hydraulic parameters and system loads on the control precision.The experimental results validated that the adopted control strategy increased the system efficiency obviously with guaranteed high control accuracy. 展开更多
关键词 pump-valve coordinated grey prediction adaptive robust control efficiency
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部