Attention is concentrated on how to perform the innovative design during the process of pumping unit conceptual design, and how to enhance design efficiency and inspire creativity. Aiming at the shortages of conceptua...Attention is concentrated on how to perform the innovative design during the process of pumping unit conceptual design, and how to enhance design efficiency and inspire creativity. Aiming at the shortages of conceptual design, introducing the theory of inventive problem solving (TRIZ) into the mechanical product design for producing innovative ideas, and using the advanced computer-aided technique, the intelligent decision support system (IDSS) based on TRIZ (TRIZ-IDSS) has been constructed. The construction method, system structure, conceptual production, decisionmaking and evaluation of the problem solving subsystem are discussed. The innovative conceptual design of pumping units indicates that the system can help the engineers open up a new space of thinking, overcome the thinking inertia, and put forward innovative design concepts. This system also can offer the scientific instructions for the innovative design of mechanical products.展开更多
Downhole working conditions of sucker rod pumping wells are automatically identified on a computer from the analysis of dynamometer cards. In this process, extraction of feature parameters and pattern classification a...Downhole working conditions of sucker rod pumping wells are automatically identified on a computer from the analysis of dynamometer cards. In this process, extraction of feature parameters and pattern classification are two key steps. The dynamometer card is firstly divided into four parts which include different production information according to the "four point method" used in actual oilfield production, and then the moment invariants for pattern recognition are extracted. An improved support vector machine (SVM) method is used for pattern classification whose error penalty parameter C and kernel function parameter g are optimally chosen by the particle swarm optimization (PSO) algorithm. The simulation results show the method proposed in this paper has good classification results.展开更多
The submersible pumping unit is a new type of pumping system for lifting formation fluids from onshore oil wells, and the identification of its working condition has an important influence on oil production. In this p...The submersible pumping unit is a new type of pumping system for lifting formation fluids from onshore oil wells, and the identification of its working condition has an important influence on oil production. In this paper we proposed a diagnostic method for identifying the working condition of the submersible pumping system. Based on analyzing the working principle of the pumping unit and the pump structure, different characteristics in loading and unloading processes of the submersible linear motor were obtained at different working conditions. The characteristic quantities were extracted from operation data of the submersible linear motor. A diagnostic model based on the support vector machine (SVM) method was proposed for identifying the working condition of the submersible pumping unit, where the inputs of the SVM classifier were the characteristic quantities. The performance and the misjudgment rate of this method were analyzed and validated by the data acquired from an experimental simulation platform. The model proposed had an excellent performance in failure diagnosis of the submersible pumping system. The SVM classifier had higher diagnostic accuracy than the learning vector quantization (LVQ) classifier.展开更多
文摘Attention is concentrated on how to perform the innovative design during the process of pumping unit conceptual design, and how to enhance design efficiency and inspire creativity. Aiming at the shortages of conceptual design, introducing the theory of inventive problem solving (TRIZ) into the mechanical product design for producing innovative ideas, and using the advanced computer-aided technique, the intelligent decision support system (IDSS) based on TRIZ (TRIZ-IDSS) has been constructed. The construction method, system structure, conceptual production, decisionmaking and evaluation of the problem solving subsystem are discussed. The innovative conceptual design of pumping units indicates that the system can help the engineers open up a new space of thinking, overcome the thinking inertia, and put forward innovative design concepts. This system also can offer the scientific instructions for the innovative design of mechanical products.
基金support from the Key Project of the National Natural Science Foundation of China (61034005)Postgraduate Scientific Research and Innovation Projects of Basic Scientific Research Operating Expenses of Ministry of Education (N100604001)
文摘Downhole working conditions of sucker rod pumping wells are automatically identified on a computer from the analysis of dynamometer cards. In this process, extraction of feature parameters and pattern classification are two key steps. The dynamometer card is firstly divided into four parts which include different production information according to the "four point method" used in actual oilfield production, and then the moment invariants for pattern recognition are extracted. An improved support vector machine (SVM) method is used for pattern classification whose error penalty parameter C and kernel function parameter g are optimally chosen by the particle swarm optimization (PSO) algorithm. The simulation results show the method proposed in this paper has good classification results.
文摘The submersible pumping unit is a new type of pumping system for lifting formation fluids from onshore oil wells, and the identification of its working condition has an important influence on oil production. In this paper we proposed a diagnostic method for identifying the working condition of the submersible pumping system. Based on analyzing the working principle of the pumping unit and the pump structure, different characteristics in loading and unloading processes of the submersible linear motor were obtained at different working conditions. The characteristic quantities were extracted from operation data of the submersible linear motor. A diagnostic model based on the support vector machine (SVM) method was proposed for identifying the working condition of the submersible pumping unit, where the inputs of the SVM classifier were the characteristic quantities. The performance and the misjudgment rate of this method were analyzed and validated by the data acquired from an experimental simulation platform. The model proposed had an excellent performance in failure diagnosis of the submersible pumping system. The SVM classifier had higher diagnostic accuracy than the learning vector quantization (LVQ) classifier.