The effects of current pulsing on the microstructure, hardness and tensile properties at different temperatures of gas tungsten arc (GTA) weldments of titanium matrix composites were studied. Full-penetration butt j...The effects of current pulsing on the microstructure, hardness and tensile properties at different temperatures of gas tungsten arc (GTA) weldments of titanium matrix composites were studied. Full-penetration butt joints were made with or without current pulsing. Optical microscopy, hardness test and scanning electron microscopy were employed to evaluate the metallurgical characteristics of welded joints. Tensile properties of weldments at different temperatures were studied and correlated with the microstructure. The results exhibit that current pulsing leads to the refinement of the weld microstrucmre and TiB whisker and the redistribution of reinforcements resulting in higher hardness, tensile strength and ductility of weldments in the as-welded condition.展开更多
The effects of pulsing electromagnetic fields(PEMFs)on cells are very important subjects in the field of bioelectromagnetics.In this experiment,the cytogenetic effects of PEMF on domestic pig lymphocytes were tested i...The effects of pulsing electromagnetic fields(PEMFs)on cells are very important subjects in the field of bioelectromagnetics.In this experiment,the cytogenetic effects of PEMF on domestic pig lymphocytes were tested in vitro.Pig lymphocytes in RPMI 1640 medium were exposed to PEMFs of 100 kHz and 200 kHz for 12,24 and 48 hours.Chromosomal aberrations(aneuploidy,breaks,gaps,et al)were significantly increased in exposed cultures,and of these aberrations,56%chromosomal or chromatid breaks and 42%gaps induced by PEMFs were the points of pig chromosomal fragile sites.The baseline frequency of sister chromatid exchange(SCE)increased after exposing lymphocytes continuously to PEMFs of 100 kHz and 200 kHz for 48 hours.These results suggested that the exposure to PEMFs might induce a type of DNA lesion and chromosomal aberrations.展开更多
The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which sh...The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which shows a remarkable variation of the unstable pulsing air flow field.CFD(computational fluid dynamics) was used to conduct the numerical simulation of the actual geometric model of the classifier.The inside velocity of the flowing fields was analyzed later.The simulation results indicate that the designed structure of the active pulsing air classifier provided a favorable environment for the separation of the particles with different physical characters by density.We shot the movement behaviors of the typical tracer grains in the active pulsing flow field using a high speed dynamic camera.The displacement and velocity curves of the particles in the continuous impulse periods were then analyzed.The experimental results indicate that the effective separation by density of the particles with the same settling velocity and different ranges of the density and particle size can be achieved in the active pulsing airflow field.The experimental results provide an agreement with the simulation results.展开更多
To research a novel technology for dry coarse coal slime beneficiation and extend its application, active pulsing air separation technology was investigated by DEM-CFD coupling simulation approach. The results show th...To research a novel technology for dry coarse coal slime beneficiation and extend its application, active pulsing air separation technology was investigated by DEM-CFD coupling simulation approach. The results show that the ash content of feed is reduced by 10% 15% and the organic efficiency is up to 91.78% by using the active pulsing air separation technology. The gas solid flow in the active pulsing air classifier was simulated. Meanwhile, the characteristics of particle motion and the separation process of different particles were analyzed, and the mechanical structure of the classifier was also modified to achieve high separation efficiency. Therefore, a novel high-efficiency dry beneficiation technique was advanced for coarse coal slime.展开更多
An extensive database (946 measurements) for the frequency of pulsing flow in trickle beds was established by collecting the experimental results published over past 30 years. A new correlation based on artificial neu...An extensive database (946 measurements) for the frequency of pulsing flow in trickle beds was established by collecting the experimental results published over past 30 years. A new correlation based on artificial neural network (ANN) to predict the pulsation frequency was developed. Seven dimensionless numbers (groups) employed in the proposed correlation were liquid and gas Reynolds, liquid Weber, liquid Eotvos, gas Froude, and gas Stokes numbers and a bed correction factor. The comparisons of performance reported in the of literature and present correlations show that ANN correlation is a significant improvement in predicting pulsation frequency with an average absolute relative error (AARE) of 10% and a standard deviation less than 18%.展开更多
Cyclic pressure pulsing with nitrogen is studied for hydraulically fractured wells in depleted reservoirs.A compositional simulation model is constructed to represent the hydraulic fractures through local-grid refinem...Cyclic pressure pulsing with nitrogen is studied for hydraulically fractured wells in depleted reservoirs.A compositional simulation model is constructed to represent the hydraulic fractures through local-grid refinement.The process is analyzed from both operational and reservoir/hydraulic-fracture perspectives.Key sensitivity parameters for the operational component are chosen as the injection rate,lengths of injection and soaking periods and the economic rate limit to shut-in the well.For the reservoir/hydraulic fracturing components,reservoir permeability,hydraulic fracture permeability,effective thickness and half-length are used.These parameters are varied at five levels.A full-factorial experimental design is utilized to run 1250 cases.The study shows that within the ranges studied,the gas-injection process is applied successfully for a 20-year project period with net present values based on the incremental recoveries greater than zero.It is observed that the cycle rate limit,injection and soaking periods must be optimized to maximize the efficiency.The simulation results are used to develop a neural network based proxy model that can be used as a screening tool for the process.The proxy model is validated with blind-cases with a correlation coefficient of 0.96.展开更多
Superalloy C-276 is known to be prone to hot cracking during fusion welding by Gas Tungsten Arc method. Microsegregation occurring during cooling of fusion zone with consequent appearance of topologically close-packed...Superalloy C-276 is known to be prone to hot cracking during fusion welding by Gas Tungsten Arc method. Microsegregation occurring during cooling of fusion zone with consequent appearance of topologically close-packed phases P and IX has been held responsible for the observed hot cracking. The present work investigated the possibility of suppressing the microsegregation in weldments by resorting to current pulse. Weldments were made by continuous current gas tungsten arc welding and pulsed current gas tungsten arc welding using ERNiCrMo-4 filler wire. The weld joints were studied with respect to microstructure, microsegregation, and mechanical properties. Optical microscopy and scanning electron microscopy were employed to study the microstructure. Energy-Dispersive X-ray Spectroscopy was carried out to evaluate the extent of microsegregation. Tensile testing was carried out to determine the strength and ductility. The results show that the joints fabricated with pulsed current gave rise to narrower welds with practically no heat affected zone, a refined microstructure in the fusion zone, reduced microsegregation, and superior combination of mechanical properties.展开更多
The influence of electropulsing on cementite decomposition in the spherical graphite iron has been studied. The results indicated that the cementite was decomposed in a short time by high current density electropulsin...The influence of electropulsing on cementite decomposition in the spherical graphite iron has been studied. The results indicated that the cementite was decomposed in a short time by high current density electropulsing. With increasing electropulsing time, the in situ nucleation of graphite in cementite was accompanied with the quick decomposition of cementite. The dislocation accumulation adjacent to the cementite and the quick diffusion of carbon atom by electropulsing were main reasons for the quick decomposition of cementite. The in situ nucleation of graphite in the cementite resulted from the dislocation climbing crossing the cementite lamellae.展开更多
Weldments were produced using gas tungsten arc welding(GTAW) and pulsed current gas tungsten arc welding(PCGTAW) techniques with ERNiCr-3 filler wire. Macro examination revealed that the resultant weldments were free ...Weldments were produced using gas tungsten arc welding(GTAW) and pulsed current gas tungsten arc welding(PCGTAW) techniques with ERNiCr-3 filler wire. Macro examination revealed that the resultant weldments were free from defects. A refined microstructure was observed in the weldment fabricated through PCGTAW. Scanning electron microscopy(SEM) analysis revealed secondary phases in the grain boundaries. Energy-dispersive X-ray spectroscopy(EDS) analysis revealed that microsegregation of Cr carbide precipitates was completely eradicated through PCGTAW. The microsegregation of Nb precipitates was observed in the GTA and PCGTA weldments. X-ray diffraction(XRD) analysis revealed the existence of M_(23)C?_6 Cr-rich carbide and Ni_8Nb phases in the GTA weldments. By contrast, in the PCGTA weldments, the Ni_8Nb phase was observed. The Cr_2Ti phase was observed in both the GTA and the PCGTA weldments. Tensile tests showed that the strength and ductility of the PCGTA weldments were slightly higher than those of the GTA weldments.展开更多
The solid-state graphitization process of spherical graphite iron after electropulsing pretreatment was ob- served in-situ by using a high-temperature confocal scanning laser microscope (HTCSLM). The influence of el...The solid-state graphitization process of spherical graphite iron after electropulsing pretreatment was ob- served in-situ by using a high-temperature confocal scanning laser microscope (HTCSLM). The influence of electro- pulsing pretreatment on the decomposition of cementite and the formation of graphite during the solid-state graphiti- zation was studied. The result indicates that the electropulsing pretreatment can accelerate the decomposition of ce mentite, and make more neonatal graphite in small size be formed near the cementite. The neonatal graphite nucle ates and grows chiefly at the temperature range of 800 to 850 ℃, and the average growth rate of neonatal graphite is 0. 034 μm2/s during the heating process. For the spherical graphite iron after normal and electropulsing pretreat- ment, the decomposition rate of cementite during the heating process is 0.16 and 0.24 μm2/s, respectively. Analy- sis shows that the electropulsing pretreatment promotes the dislocation accumulation near the cementite, conse- quently, the decomposition of cementite and the formation of neonatal graphite is accelerated during the solid-state graphitization.展开更多
Surface milling of hardened steel is carried out with copious supply of cutting fluid and is obviously associated with problems related to procurement and storage of cutting fluid. The disposal of cutting fluid has to...Surface milling of hardened steel is carried out with copious supply of cutting fluid and is obviously associated with problems related to procurement and storage of cutting fluid. The disposal of cutting fluid has to comply with environmental legislation such as OSHA regulations. The present investigation proposes an environment friendly minimal pulsed jet cutting fluid application scheme for surface milling of AISI4340 steel with a hardness of 45 HRC using commercially available carbide tools. This scheme can be implemented as such on the shop floor with out the need for any major alternations on the existing facilities and it was observed that the new scheme is not only environment friendly but also provided better cutting performance when compared to conventional wet milling which requires copious supply of cutting fluid.展开更多
A test beam line for pulsed beam generation for 10 MeV central region model (CRM) of a compact cyclotron is under construction at China Institute of Atomic Energy (CIAE).A 70MHz continuous H^- beam with the energy of ...A test beam line for pulsed beam generation for 10 MeV central region model (CRM) of a compact cyclotron is under construction at China Institute of Atomic Energy (CIAE).A 70MHz continuous H^- beam with the energy of dosens of keV or a hundred keV will be pulsed to a pulse length of less than 10ns with the repetition rate of 1—8MHz.A 70.487MHz buncher will be used to compress the DC beam into the RF phase acceptance of±30°of the CRM cyclotron. The 2.2MHz sine waveform will be used for the chopper.A pulse with the repetition rate of 4.4MHz and pulse length less than 10ns is expected after CRM cyclotron.展开更多
Unlike a traditional fiber laser with a defined resonant cavity, a random fiber laser(RFL), whose operation is based on distributed feedback and gain via Rayleigh scattering(RS) and stimulated Raman scattering in a lo...Unlike a traditional fiber laser with a defined resonant cavity, a random fiber laser(RFL), whose operation is based on distributed feedback and gain via Rayleigh scattering(RS) and stimulated Raman scattering in a long passive fiber, has fundamental scientific challenges in pulsing operation for its remarkable cavity-free feature. For the time being, stable pulsed RFL utilizing a passive method has not been reported. Here, we propose and experimentally realize the passive spatiotemporal gain-modulation-induced stable pulsing operation of counterpumped RFL. Thanks to the good temporal stability of an employed pumping amplified spontaneous emission source and the superiority of this pulse generation scheme, a stable and regular pulse train can be obtained.Furthermore, the pump hysteresis and bistability phenomena with the generation of high-order Stokes light is presented, and the dynamics of pulsing operation is discussed after the theoretical investigation of the counterpumped RFL. This work extends our comprehension of temporal property of RFL and paves an effective novel avenue for the exploration of pulsed RFL with structural simplicity, low cost, and stable output.展开更多
Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,...Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,including bubble,electromagnetic stirring,filtration separation,fluid flow,and sedimentation,often struggle with the removal of fine inclusions.Apart from these known methods,pulsed electric current(PEC),as an emerging technology,has demonstrated immense potential and environmental advantages.PEC offers adjustable current parameters and simple equipment,making it an attractive alternative to traditional methods.Its green energy-saving features and excellent results in regulating inclusion morphology and migration,as well as inhibiting submerged entry nozzle(SEN)clogging,make it a promising technology.In comparison to continuous current technology,PEC has shown significant advantages in regulating inclusions,not only improving purification efficiency but also demonstrating outstanding performance in flow stability and energy consumption.The ability of PEC to efficiently reduce inclusion numbers enhances the purity and quality of molten steel,improving its mechanical properties.Currently,the theoretical basis for controlling the movement of inclusions by current is mainly composed of three major theories:the double electric layer theory,electromagnetic force reverse separation theory,and electric free energy drive theory.These theories together form an important framework for researchers to understand and optimize the behavior of impurity movement controlled by electric current.Looking ahead,PEC is expected to pave the way for new solutions in directional regulation of inclusion migration,efficient inclusion removal,SEN clogging prevention,and the purification of molten steel.展开更多
Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target dama...Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target damage due to the challenge of maintaining high peak power density over long distances.We note that a potential solution lies in leveraging the air filament generated by femtosecond laser,which can transmit peak power densities higher than 1014 W/cm^(2)under the power clamping effect.To address this,a concept of a femtosecond laser induced air filament-CW CPL for surface damage of ceramics was introduced.We found no surface changes in ceramic targets when irradiated with a CW laser alone.By way of contrast,the target can be penetrated in a very short time(20 ms)with the assistance of the femtosecond laser induced air filament.In this context,we employ high-speed shadow imaging,cross-timescale simulation models and macro-microscopic characterization,to elucidate the CPL damage mechanism.The optimal CPL,combining a 1 mJ femtosecond laser and a 500 W CW laser,yields a damage rate of 1.51×10^(7)μm^(3)/J,representing an improvement of approximately 175%compared to single femtosecond laser ablation and around 59%enhancement compared to coating-assisted CW laser ablation.Furthermore,the efficacy of the proposed femtosecond-CW CPL method is demonstrated in causing penetration damage of ceramic/metal composite material or direct damage of sapphire,showcasing its versatility in damaging applications.Consequently,the femtosecond-CW CPL ablation method presented in this paper holds great promise as a new type of damage method for transparent hard and brittle materials.展开更多
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for...The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.展开更多
The four-level nested neutral-point-clamped(4L-NNPC)inverter is a competitive topology among the various medium-voltage multilevel converters,and its main issue is flying-capacitor voltage unbalance.In this article,a ...The four-level nested neutral-point-clamped(4L-NNPC)inverter is a competitive topology among the various medium-voltage multilevel converters,and its main issue is flying-capacitor voltage unbalance.In this article,a novel carrier-interleaved pulse width modulation(CIPWM)method that satisfies the volt-sec balance principle is proposed with an advanced carrier distribution rule.By adopting the proposed CIPWM method,the redundant switching states of 4L-NNPC inverters can be evenly distributed into the output PWM waveform in each carrier period,and natural flying-capacitor voltage balance can be achieved.Furthermore,an active balancing strategy is also proposed to eliminate the voltage unbalance caused by nonideal factors,which is realized by simply adjusting the duty cycle and with no need to adjust the redundant switching states for 4L-NNPC inverters.The simulation and experimental results verify the effectiveness of the proposed CIPWM method and the flying-capacitor voltage balancing strategy.展开更多
Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The tech...Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.展开更多
In this paper, we have demonstrated an Er-doped ultrafast laser with a single mode fiber-gradient index multimode fiber-single mode fiber(SMF-GIMF-SMF, SMS) structure as saturable absorber(SA), which can generate not ...In this paper, we have demonstrated an Er-doped ultrafast laser with a single mode fiber-gradient index multimode fiber-single mode fiber(SMF-GIMF-SMF, SMS) structure as saturable absorber(SA), which can generate not only stable single-pulse state, but also special mode-locked pulses with the characteristics of high energy and noisy behaviors at proper pump power and cavity polarization state. In addition, we have deeply investigated the real-time spectral evolutions of the mode-locked pulses through the dispersive Fourier transformation(DFT) technique. It can be found that the pulse regime can actually consist of a lot of small noise pulses with randomly varying intensities. We believe that these results will further enrich the nonlinear dynamical processes in the ultrafast lasers.展开更多
Development of methodologies for fabrications of nanostructured materials that provide control over their microstructural features and compositions represents a fundamental step in the advancement of technologies for ...Development of methodologies for fabrications of nanostructured materials that provide control over their microstructural features and compositions represents a fundamental step in the advancement of technologies for productions of materials with well-defined functional properties.Pulse electrolysis,a top-down electrochemical approach,has been demonstrated to be a viable method for producing nanostructured materials with a particular efficacy in the synthesis of tin oxides.This method allows for significant control over the composition and shape of the resulting tin oxides particles by modifying the anionic composition of the aqueous electrolyte,obviating the need for additional capping agents in the synthesis process and eliminating the requirement for high-temperature post-treatments.The composition and microstructural characteristics of these oxides are found to be contingent upon the differing stabilities of tin fluoride and chloride complexes,as well as the distinct mechanisms of interaction between chloride and fluoride anions with an oxidized tin surface,which is influenced by the varying kosmotropic/chaotropic nature of these anions.The composition and microstructural characteristics of the obtained dispersed tin oxides would thus determine their potential applications as an anode material for lithium-ion batteries,as a photocatalyst,or as an oxyphilic component of a hybrid support for a platinum-containing electrocatalyst.展开更多
基金Project(51371114)supported by the National Natural Science Foundation of ChinaProject(2012CB619600)supported by the National Basic Research Program of China+1 种基金Project(10SG15)supported by the Dawn Program of Shanghai Education Commission,ChinaProject(12XD1402800)supported by Shanghai Science and Technology Committee,China
文摘The effects of current pulsing on the microstructure, hardness and tensile properties at different temperatures of gas tungsten arc (GTA) weldments of titanium matrix composites were studied. Full-penetration butt joints were made with or without current pulsing. Optical microscopy, hardness test and scanning electron microscopy were employed to evaluate the metallurgical characteristics of welded joints. Tensile properties of weldments at different temperatures were studied and correlated with the microstructure. The results exhibit that current pulsing leads to the refinement of the weld microstrucmre and TiB whisker and the redistribution of reinforcements resulting in higher hardness, tensile strength and ductility of weldments in the as-welded condition.
文摘The effects of pulsing electromagnetic fields(PEMFs)on cells are very important subjects in the field of bioelectromagnetics.In this experiment,the cytogenetic effects of PEMF on domestic pig lymphocytes were tested in vitro.Pig lymphocytes in RPMI 1640 medium were exposed to PEMFs of 100 kHz and 200 kHz for 12,24 and 48 hours.Chromosomal aberrations(aneuploidy,breaks,gaps,et al)were significantly increased in exposed cultures,and of these aberrations,56%chromosomal or chromatid breaks and 42%gaps induced by PEMFs were the points of pig chromosomal fragile sites.The baseline frequency of sister chromatid exchange(SCE)increased after exposing lymphocytes continuously to PEMFs of 100 kHz and 200 kHz for 48 hours.These results suggested that the exposure to PEMFs might induce a type of DNA lesion and chromosomal aberrations.
基金the financial support provided by the National Natural Science Foundation of China (No.51074156)the Natural Science Foundation of China for InnovativeResearch Group (No. 50921002)+1 种基金the Natural Science Foundation of Jiangsu Province of China (No. BK2010002)the Fundamental Research Funds for the Central Universities (No. 2010ZDP01A06)
文摘The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which shows a remarkable variation of the unstable pulsing air flow field.CFD(computational fluid dynamics) was used to conduct the numerical simulation of the actual geometric model of the classifier.The inside velocity of the flowing fields was analyzed later.The simulation results indicate that the designed structure of the active pulsing air classifier provided a favorable environment for the separation of the particles with different physical characters by density.We shot the movement behaviors of the typical tracer grains in the active pulsing flow field using a high speed dynamic camera.The displacement and velocity curves of the particles in the continuous impulse periods were then analyzed.The experimental results indicate that the effective separation by density of the particles with the same settling velocity and different ranges of the density and particle size can be achieved in the active pulsing airflow field.The experimental results provide an agreement with the simulation results.
基金Projects(51221462,51134022,51074156)supported by the National Natural Science Foundation of ChinaProject(2012CB214904)supported by the National Basic Research Program of ChinaProject(20120095130001)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘To research a novel technology for dry coarse coal slime beneficiation and extend its application, active pulsing air separation technology was investigated by DEM-CFD coupling simulation approach. The results show that the ash content of feed is reduced by 10% 15% and the organic efficiency is up to 91.78% by using the active pulsing air separation technology. The gas solid flow in the active pulsing air classifier was simulated. Meanwhile, the characteristics of particle motion and the separation process of different particles were analyzed, and the mechanical structure of the classifier was also modified to achieve high separation efficiency. Therefore, a novel high-efficiency dry beneficiation technique was advanced for coarse coal slime.
基金the State Key Development Program for Basic Research of China (No. G2000048005)the SINOPEC (X503023).
文摘An extensive database (946 measurements) for the frequency of pulsing flow in trickle beds was established by collecting the experimental results published over past 30 years. A new correlation based on artificial neural network (ANN) to predict the pulsation frequency was developed. Seven dimensionless numbers (groups) employed in the proposed correlation were liquid and gas Reynolds, liquid Weber, liquid Eotvos, gas Froude, and gas Stokes numbers and a bed correction factor. The comparisons of performance reported in the of literature and present correlations show that ANN correlation is a significant improvement in predicting pulsation frequency with an average absolute relative error (AARE) of 10% and a standard deviation less than 18%.
文摘Cyclic pressure pulsing with nitrogen is studied for hydraulically fractured wells in depleted reservoirs.A compositional simulation model is constructed to represent the hydraulic fractures through local-grid refinement.The process is analyzed from both operational and reservoir/hydraulic-fracture perspectives.Key sensitivity parameters for the operational component are chosen as the injection rate,lengths of injection and soaking periods and the economic rate limit to shut-in the well.For the reservoir/hydraulic fracturing components,reservoir permeability,hydraulic fracture permeability,effective thickness and half-length are used.These parameters are varied at five levels.A full-factorial experimental design is utilized to run 1250 cases.The study shows that within the ranges studied,the gas-injection process is applied successfully for a 20-year project period with net present values based on the incremental recoveries greater than zero.It is observed that the cycle rate limit,injection and soaking periods must be optimized to maximize the efficiency.The simulation results are used to develop a neural network based proxy model that can be used as a screening tool for the process.The proxy model is validated with blind-cases with a correlation coefficient of 0.96.
基金supported by the Defence Research Development organization (DRDO) (No. ERIP/ ER/1103952/M/01/1403)Department of Science and Technology for the funding received from them under the FIST programme
文摘Superalloy C-276 is known to be prone to hot cracking during fusion welding by Gas Tungsten Arc method. Microsegregation occurring during cooling of fusion zone with consequent appearance of topologically close-packed phases P and IX has been held responsible for the observed hot cracking. The present work investigated the possibility of suppressing the microsegregation in weldments by resorting to current pulse. Weldments were made by continuous current gas tungsten arc welding and pulsed current gas tungsten arc welding using ERNiCrMo-4 filler wire. The weld joints were studied with respect to microstructure, microsegregation, and mechanical properties. Optical microscopy and scanning electron microscopy were employed to study the microstructure. Energy-Dispersive X-ray Spectroscopy was carried out to evaluate the extent of microsegregation. Tensile testing was carried out to determine the strength and ductility. The results show that the joints fabricated with pulsed current gave rise to narrower welds with practically no heat affected zone, a refined microstructure in the fusion zone, reduced microsegregation, and superior combination of mechanical properties.
基金supported by the Department of Edu-cation of Liaoning Province, China (No. 2008T089).
文摘The influence of electropulsing on cementite decomposition in the spherical graphite iron has been studied. The results indicated that the cementite was decomposed in a short time by high current density electropulsing. With increasing electropulsing time, the in situ nucleation of graphite in cementite was accompanied with the quick decomposition of cementite. The dislocation accumulation adjacent to the cementite and the quick diffusion of carbon atom by electropulsing were main reasons for the quick decomposition of cementite. The in situ nucleation of graphite in the cementite resulted from the dislocation climbing crossing the cementite lamellae.
文摘Weldments were produced using gas tungsten arc welding(GTAW) and pulsed current gas tungsten arc welding(PCGTAW) techniques with ERNiCr-3 filler wire. Macro examination revealed that the resultant weldments were free from defects. A refined microstructure was observed in the weldment fabricated through PCGTAW. Scanning electron microscopy(SEM) analysis revealed secondary phases in the grain boundaries. Energy-dispersive X-ray spectroscopy(EDS) analysis revealed that microsegregation of Cr carbide precipitates was completely eradicated through PCGTAW. The microsegregation of Nb precipitates was observed in the GTA and PCGTA weldments. X-ray diffraction(XRD) analysis revealed the existence of M_(23)C?_6 Cr-rich carbide and Ni_8Nb phases in the GTA weldments. By contrast, in the PCGTA weldments, the Ni_8Nb phase was observed. The Cr_2Ti phase was observed in both the GTA and the PCGTA weldments. Tensile tests showed that the strength and ductility of the PCGTA weldments were slightly higher than those of the GTA weldments.
文摘The solid-state graphitization process of spherical graphite iron after electropulsing pretreatment was ob- served in-situ by using a high-temperature confocal scanning laser microscope (HTCSLM). The influence of electro- pulsing pretreatment on the decomposition of cementite and the formation of graphite during the solid-state graphiti- zation was studied. The result indicates that the electropulsing pretreatment can accelerate the decomposition of ce mentite, and make more neonatal graphite in small size be formed near the cementite. The neonatal graphite nucle ates and grows chiefly at the temperature range of 800 to 850 ℃, and the average growth rate of neonatal graphite is 0. 034 μm2/s during the heating process. For the spherical graphite iron after normal and electropulsing pretreat- ment, the decomposition rate of cementite during the heating process is 0.16 and 0.24 μm2/s, respectively. Analy- sis shows that the electropulsing pretreatment promotes the dislocation accumulation near the cementite, conse- quently, the decomposition of cementite and the formation of neonatal graphite is accelerated during the solid-state graphitization.
文摘Surface milling of hardened steel is carried out with copious supply of cutting fluid and is obviously associated with problems related to procurement and storage of cutting fluid. The disposal of cutting fluid has to comply with environmental legislation such as OSHA regulations. The present investigation proposes an environment friendly minimal pulsed jet cutting fluid application scheme for surface milling of AISI4340 steel with a hardness of 45 HRC using commercially available carbide tools. This scheme can be implemented as such on the shop floor with out the need for any major alternations on the existing facilities and it was observed that the new scheme is not only environment friendly but also provided better cutting performance when compared to conventional wet milling which requires copious supply of cutting fluid.
文摘A test beam line for pulsed beam generation for 10 MeV central region model (CRM) of a compact cyclotron is under construction at China Institute of Atomic Energy (CIAE).A 70MHz continuous H^- beam with the energy of dosens of keV or a hundred keV will be pulsed to a pulse length of less than 10ns with the repetition rate of 1—8MHz.A 70.487MHz buncher will be used to compress the DC beam into the RF phase acceptance of±30°of the CRM cyclotron. The 2.2MHz sine waveform will be used for the chopper.A pulse with the repetition rate of 4.4MHz and pulse length less than 10ns is expected after CRM cyclotron.
基金National Natural Science Foundation of China(NSFC)(61322505,61635005)Hunan Provincial Innovation Foundation for Postgraduate Student(CX2017B030)
文摘Unlike a traditional fiber laser with a defined resonant cavity, a random fiber laser(RFL), whose operation is based on distributed feedback and gain via Rayleigh scattering(RS) and stimulated Raman scattering in a long passive fiber, has fundamental scientific challenges in pulsing operation for its remarkable cavity-free feature. For the time being, stable pulsed RFL utilizing a passive method has not been reported. Here, we propose and experimentally realize the passive spatiotemporal gain-modulation-induced stable pulsing operation of counterpumped RFL. Thanks to the good temporal stability of an employed pumping amplified spontaneous emission source and the superiority of this pulse generation scheme, a stable and regular pulse train can be obtained.Furthermore, the pump hysteresis and bistability phenomena with the generation of high-order Stokes light is presented, and the dynamics of pulsing operation is discussed after the theoretical investigation of the counterpumped RFL. This work extends our comprehension of temporal property of RFL and paves an effective novel avenue for the exploration of pulsed RFL with structural simplicity, low cost, and stable output.
基金supported by the Fundamental Research Funds for the Central Universities(No.FRF-BD-23-01).
文摘Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,including bubble,electromagnetic stirring,filtration separation,fluid flow,and sedimentation,often struggle with the removal of fine inclusions.Apart from these known methods,pulsed electric current(PEC),as an emerging technology,has demonstrated immense potential and environmental advantages.PEC offers adjustable current parameters and simple equipment,making it an attractive alternative to traditional methods.Its green energy-saving features and excellent results in regulating inclusion morphology and migration,as well as inhibiting submerged entry nozzle(SEN)clogging,make it a promising technology.In comparison to continuous current technology,PEC has shown significant advantages in regulating inclusions,not only improving purification efficiency but also demonstrating outstanding performance in flow stability and energy consumption.The ability of PEC to efficiently reduce inclusion numbers enhances the purity and quality of molten steel,improving its mechanical properties.Currently,the theoretical basis for controlling the movement of inclusions by current is mainly composed of three major theories:the double electric layer theory,electromagnetic force reverse separation theory,and electric free energy drive theory.These theories together form an important framework for researchers to understand and optimize the behavior of impurity movement controlled by electric current.Looking ahead,PEC is expected to pave the way for new solutions in directional regulation of inclusion migration,efficient inclusion removal,SEN clogging prevention,and the purification of molten steel.
基金supports from National Natural Science Foundation of China(Grant No.52105498)The science and technology innovation Program of Hunan Province(Grant No.2021RC3074)+2 种基金Advanced Laser Technology Laboratory of Anhui Province(AHL2022KF04)National Key R&D Program of China(Grant No.2023YFB14605500)Changsha Natural Science Foundation(kq2402089).
文摘Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target damage due to the challenge of maintaining high peak power density over long distances.We note that a potential solution lies in leveraging the air filament generated by femtosecond laser,which can transmit peak power densities higher than 1014 W/cm^(2)under the power clamping effect.To address this,a concept of a femtosecond laser induced air filament-CW CPL for surface damage of ceramics was introduced.We found no surface changes in ceramic targets when irradiated with a CW laser alone.By way of contrast,the target can be penetrated in a very short time(20 ms)with the assistance of the femtosecond laser induced air filament.In this context,we employ high-speed shadow imaging,cross-timescale simulation models and macro-microscopic characterization,to elucidate the CPL damage mechanism.The optimal CPL,combining a 1 mJ femtosecond laser and a 500 W CW laser,yields a damage rate of 1.51×10^(7)μm^(3)/J,representing an improvement of approximately 175%compared to single femtosecond laser ablation and around 59%enhancement compared to coating-assisted CW laser ablation.Furthermore,the efficacy of the proposed femtosecond-CW CPL method is demonstrated in causing penetration damage of ceramic/metal composite material or direct damage of sapphire,showcasing its versatility in damaging applications.Consequently,the femtosecond-CW CPL ablation method presented in this paper holds great promise as a new type of damage method for transparent hard and brittle materials.
基金National Natural Science Foundation of China(No.52476192,No.52106237)Natural Science Foundation of Heilongjiang Province(No.YQ2022E027)。
文摘The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.
基金supported by Beijing Natural Science Foundation under Grant L242006.
文摘The four-level nested neutral-point-clamped(4L-NNPC)inverter is a competitive topology among the various medium-voltage multilevel converters,and its main issue is flying-capacitor voltage unbalance.In this article,a novel carrier-interleaved pulse width modulation(CIPWM)method that satisfies the volt-sec balance principle is proposed with an advanced carrier distribution rule.By adopting the proposed CIPWM method,the redundant switching states of 4L-NNPC inverters can be evenly distributed into the output PWM waveform in each carrier period,and natural flying-capacitor voltage balance can be achieved.Furthermore,an active balancing strategy is also proposed to eliminate the voltage unbalance caused by nonideal factors,which is realized by simply adjusting the duty cycle and with no need to adjust the redundant switching states for 4L-NNPC inverters.The simulation and experimental results verify the effectiveness of the proposed CIPWM method and the flying-capacitor voltage balancing strategy.
文摘Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.
基金supported by the Guangdong Basic and Applied Basic Research Foundation (No.2023A1515010093)the Shenzhen Fundamental Research Program (Stable Support Plan Program)(Nos.JCYJ20220809170611004, 20231121110828001 and 20231121113641002)the National Taipei University of Technology-Shenzhen University Joint Research Program (No.2024001)。
文摘In this paper, we have demonstrated an Er-doped ultrafast laser with a single mode fiber-gradient index multimode fiber-single mode fiber(SMF-GIMF-SMF, SMS) structure as saturable absorber(SA), which can generate not only stable single-pulse state, but also special mode-locked pulses with the characteristics of high energy and noisy behaviors at proper pump power and cavity polarization state. In addition, we have deeply investigated the real-time spectral evolutions of the mode-locked pulses through the dispersive Fourier transformation(DFT) technique. It can be found that the pulse regime can actually consist of a lot of small noise pulses with randomly varying intensities. We believe that these results will further enrich the nonlinear dynamical processes in the ultrafast lasers.
基金supported by the Ministry of Science and Higher Education of the Russian Federation under Project FENN-2024-0002.
文摘Development of methodologies for fabrications of nanostructured materials that provide control over their microstructural features and compositions represents a fundamental step in the advancement of technologies for productions of materials with well-defined functional properties.Pulse electrolysis,a top-down electrochemical approach,has been demonstrated to be a viable method for producing nanostructured materials with a particular efficacy in the synthesis of tin oxides.This method allows for significant control over the composition and shape of the resulting tin oxides particles by modifying the anionic composition of the aqueous electrolyte,obviating the need for additional capping agents in the synthesis process and eliminating the requirement for high-temperature post-treatments.The composition and microstructural characteristics of these oxides are found to be contingent upon the differing stabilities of tin fluoride and chloride complexes,as well as the distinct mechanisms of interaction between chloride and fluoride anions with an oxidized tin surface,which is influenced by the varying kosmotropic/chaotropic nature of these anions.The composition and microstructural characteristics of the obtained dispersed tin oxides would thus determine their potential applications as an anode material for lithium-ion batteries,as a photocatalyst,or as an oxyphilic component of a hybrid support for a platinum-containing electrocatalyst.