期刊文献+
共找到121篇文章
< 1 2 7 >
每页显示 20 50 100
Pulsed current annealing of sputtered amorphous ITO films
1
作者 Qiu-Li Chen Wang-Chang Chen +6 位作者 Tao Gong Feng-Xu Fang Shu-Yao Chen Yi Feng Dong-Hua Liu Long-Jiang Deng Tao Liu 《Rare Metals》 2025年第3期1824-1832,共9页
The complicated structure of electronic devices makes the conventional annealing method,which involves placing the entire device in a furnace,insufficient for achieving the desired quality.This issue is currently addr... The complicated structure of electronic devices makes the conventional annealing method,which involves placing the entire device in a furnace,insufficient for achieving the desired quality.This issue is currently addressed through the use of pulsed laser annealing,where a specific target layer is heated,preventing the overheating of other layers or the substrate.However,this method is only applicable to a very limited range of materials and requires very expensive,powerful pulsed laser sources.Herein,a novel approach for the selective local thermal treatment of thin films is proposed;in this method,short,powerful current pulses are applied to the target conductive layer.The application of two current pulses with a length of 1.5 s induced the crystallization of a 160-nm thick indium tin oxide(ITO)film,resulting in a sheet resistance of 8.68Ω·sq^(-1),an average visible light transmittance of 86.69%,and a figure of merit(FoM)of 293.61.This FoM is an order of magnitude higher than that of the as-prepared ITO film,and to the best of our knowledge,is among the highest reported values for the polycrystalline ITO films.Simulations have shown that even faster and more localized crystallization could be achieved by increasing the power of pulsed current.This novel annealing method is applicable to most semi-conductive or metallic thin films and requires only a relatively inexpensive pulsed current source,making it potentially more attractive than pulsed laser annealing. 展开更多
关键词 Selective local thermal treatment pulsed current annealing Electronic device ITO film
原文传递
Mechanism of high-energy pulsed current-assisted rolling of 08AL carbon steel ultra-thin strip
2
作者 Zhong-kai Ren Ya-nan Xu +5 位作者 Jia-zhao Chen He Li Rui-lin Yuan Zhen-hua Wang Tao Wang Xiao Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第2期416-427,共12页
To improve the plastic deformation performance of a 08AL carbon steel ultra-thin strip,a pulsed electric field was integrated into the plastic processing of the ultra-thin strip,and the effects of high-energy current ... To improve the plastic deformation performance of a 08AL carbon steel ultra-thin strip,a pulsed electric field was integrated into the plastic processing of the ultra-thin strip,and the effects of high-energy current on its deformation ability were investigated.Current-assisted tensile tests were employed,and the results clarified that the pulsed current could reduce the activation energy of faults and promoted dislocation slip within grains and at grain boundaries,leading to a decrease in the deformation resistance of the metal and an increase in its plastic properties.Under the current density of 2.0 A/mm2,the yield strength,tensile strength,and elongation of the rolled sample reached 425 MPa,467 MPa,and 12.5%,respectively.During the rolling process,it was found that the pulsed current promoted the dynamic recrystallization of the ultra-thin strip,reduced its dislocation density and deformation resistance,and promoted the coordinated deformation of the metal. 展开更多
关键词 08AL ultra-thin strip High-energy pulsed current Mechanical property Dislocation density Dynamic recrystallization
原文传递
Effect of Pulsed Current Treatment on Microstructure and Properties of 304 Stainless Steel Ultra-Thin Strip after Rolling
3
作者 Qi Liu Wanwan Fan +2 位作者 Zhongkai Ren Tao Wang Qingxue Huang 《Chinese Journal of Mechanical Engineering》 CSCD 2024年第6期579-590,共12页
The annealing process is usually used to heat-treat cold-deformed 304 stainless steel to improve its microstructure and properties to a certain extent;however,it requires a high temperature and a long time.Because the... The annealing process is usually used to heat-treat cold-deformed 304 stainless steel to improve its microstructure and properties to a certain extent;however,it requires a high temperature and a long time.Because the thickness of the ultrathin strip reaches the micrometer level,it has only one or several layers of grains in the thickness direction,and the control of morphology and performance is complex.In this study,pulsed current loading was used to replace traditional annealing for treating ultrathin strips of cold-rolled 304 stainless steel.After loading a 25 W pulsed current treatment for 5 min on the cold-rolled sample,which had a thickness of 0.035 mm and width of 6 mm,complete recrystallization occurred,and the mechanical properties were significantly improved.At this point,the measured temperature was 540°C.When annealing was used to treat the sample with the same temperature and for the same duration,the microstructure was still dominated by deformed crystals,and the mechanical properties were poor.When annealing was used to obtain a microstructure and properties similar to those obtained via 25 W electrical treatment,the required annealing temperature and time were 810°C and 60 min,respectively.Pulsed current can increase the vacancy diffusion flux in the sample,accelerate the atomic movement,reduce the recrystallization activation energy,and make the cold-rolled 304 stainless steel ultrathin strip completely recrystallize at a lower temperature and in a shorter time.As the current power continued to increase,the recrystallized grains grew.When the pulsed current power was increased to 25 W,the recrystallized grains grew negligibly.Both recrystallization and grain growth have power thresholds.This study provides a novel approach for regulating the microstructure and mechanical properties of ultrathin cold-rolled 304 stainless steel strips. 展开更多
关键词 pulsed current 304 stainless steel ultrathin strip RECRYSTALLIZATION Grain growth
在线阅读 下载PDF
Optimizing the Pulsed Current Gas Tungsten Arc Welding Parameters 被引量:9
4
作者 M.Balasubramanian V.Jayabalan V. Balasubramanian 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第6期821-825,共5页
The selection of process parameter in the gas tungsten arc (GTA) welding of titanium alloy was presented for obtaining optimum grain size and hardness. Titanium alloy (Ti-6Al-4V) is one of the most important non-f... The selection of process parameter in the gas tungsten arc (GTA) welding of titanium alloy was presented for obtaining optimum grain size and hardness. Titanium alloy (Ti-6Al-4V) is one of the most important non-ferrous metals which offers great potential application in aerospace, biomedical and chemical industries, because of its low density (4.5 g/cm^3), excellent corrosion resistance, high strength, attractive fracture behaviour and high melting point (1678℃). The preferred welding process for titanium alloy is frequent GTA welding due to its comparatively easier applicability and better economy. In the case of single pass (GTA) welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. Many considerations come into the picture and one needs to carefully balance various pulse current parameters to reach an optimum combination. Four factors, five level, central composite, rotatable design matrix were used to optimize the required number of experimental conditions. Mathematical models were developed to predict the fusion zone grain size using analysis of variance (ANOVA) and regression analysis. The developed models were optimized using the traditional Hooke and Jeeve's algorithm. Experimental results were provided to illustrate the proposed approach. 展开更多
关键词 pulsed current Gas tungsten arc welding Titanium alloy Design of experiments ANOVA Hooke and Jeeve's algorithm Grain size HARDNESS
在线阅读 下载PDF
Effect of pulsed current on temperature distribution,weld bead profiles and characteristics of gas tungsten arc welded aluminum alloy joints 被引量:6
5
作者 N.KARUNAKARAN V.BALASUBRAMANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第2期278-286,共9页
Temperature distribution and weld bead profiles of constant current and pulsed current gas tungsten arc welded aluminium alloy joints were compared. The effects of pulsed current welding on tensile properties, hardnes... Temperature distribution and weld bead profiles of constant current and pulsed current gas tungsten arc welded aluminium alloy joints were compared. The effects of pulsed current welding on tensile properties, hardness profiles, microstructural features and residual stress distribution of aluminium alloy joints were reported. The use of pulsed current technique is found to improve the tensile properties of the weld compared with continuous current welding due to grain refinement occurring in the fusion zone. 展开更多
关键词 aluminium alloy gas tungsten arc welding pulsed current temperature distribution bead profiles tensile properties
在线阅读 下载PDF
Optimization of pulsed current gas tungsten arc welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy 被引量:7
6
作者 G.PADMANABAN V.BALASUBRAMANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期467-476,共10页
An empirical relationship to predict tensile strength of pulsed current gas tungsten arc welded AZ31B magnesium alloy was developed. Incorporating process parameters such as peak current, base current, pulse frequency... An empirical relationship to predict tensile strength of pulsed current gas tungsten arc welded AZ31B magnesium alloy was developed. Incorporating process parameters such as peak current, base current, pulse frequency and pulse on time were studied. The experiments were conducted based on a four-factor, five-level, central composite design matrix. The developed empirical relationship can be effectively used to predict the tensile strength of pulsed current gas tungsten arc welded AZ31B magnesium alloy joints at 95% confidence level. The results indicate that pulse frequency has the greatest influence on tensile strength, followed by peak current, pulse on time and base current. 展开更多
关键词 AZ31B magnesium alloy pulsed current gas tungsten arc welding response surface methodology OPTIMIZATION tensile strength
在线阅读 下载PDF
Effect of Pulsed Current TIG Welding Parameters on Pitting Corrosion Behaviour of AA6061 Aluminium Alloy 被引量:5
7
作者 T.Senthil Kumar V.Balasubramanian +1 位作者 M.Y.Sanavullah S.Babu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第2期223-229,共7页
Medium strength aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to weight ratio, such as transportable bridge girders, military v... Medium strength aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring a high strength-to weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding process for aluminium alloy is frequently TIG (tungsten inert gas) welding due to its comparatively easier applicability and better economy.In the case of single pass TIG welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. A mathematical model has been developed to predict pitting corrosion potential of pulsed current TIG welded AA6061 aluminium alloy.Factorial experimental design has been used to optimize the experimental conditions. Analysis of variance technique has been used to find out the significant pulsed current parameters. Regression analysis has been used to develop the model. Using the developed model pitting corrosion potential values have been estimated for different combinations of pulsed current parameters and the results are analyzed in detail. 展开更多
关键词 pulsed current Tungsten inert gas welding Medium strength aluminium alloy Pitting corrosion Design of experiments Analysis of variance
在线阅读 下载PDF
Effect of process parameters of pulsed current tungsten inert gas welding on weld pool geometry of titanium welds 被引量:5
8
作者 M.Balasubramanian V.Jayabalan V.Balasubramanian 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2010年第4期312-320,共9页
The effects of pulsing current parameters on weld pool geometry namely front height, back height, front width and back width of pulse current gas tungsten arc welded (GTAW) titanium alloy was analysed. Four factors,... The effects of pulsing current parameters on weld pool geometry namely front height, back height, front width and back width of pulse current gas tungsten arc welded (GTAW) titanium alloy was analysed. Four factors, five levels, central composite design were used to develop empirical relationships, incorporating pulsed current parameters and weld pool geometry. 展开更多
关键词 Gas tungsten arc welding pulsed current Titanium alloy Design of experiments
原文传递
Effect of pulsed current micro plasma arc welding process parameters on fusion zone grain size and ultimate tensile strength of Inconel 625 sheets 被引量:4
9
作者 Kondapalli Siva Prasad Chalamalasetti Srinivasa Rao Damera Nageswara Rao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2012年第3期179-189,共11页
The paper focuses on developing mathematical models to predict grain size and ul- timate tensile strength of pulsed current micro plasma arc welded Inconel 625 nickel alloy. Four factors, five levels, central composit... The paper focuses on developing mathematical models to predict grain size and ul- timate tensile strength of pulsed current micro plasma arc welded Inconel 625 nickel alloy. Four factors, five levels, central composite rotatable design matrix is used to op- timize the number of experiments. The mathematical models have been developed by response surface method. The adequacy of the models is checked by analysis of vari- ance technique. By using the developed mathematical models, grain size and ultimate tensile strength of the joints can be predicted with 99% confidence level. Contour plots are drawn to study the interaction effect of pulsed current micro plasma arc welding parameters on fusion zone grain size and ultimate tensile strength of Inconel 625 weld joints. 展开更多
关键词 pulsed current Micro plasma arc welding ANOYA Response surface method: Inconel 625
原文传递
Effect of pulsed current on AZ31B magnesium sheets during annealing 被引量:2
10
作者 Kai LIU Xiang-huai DONG Wen SHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第4期735-740,共6页
The annealing tests heated by pulsed current(PC)or furnace for AZ31B magnesium sheets were carried out,and the effects of PC on the microstructure and dislocation density of the alloy were analyzed.The results show th... The annealing tests heated by pulsed current(PC)or furnace for AZ31B magnesium sheets were carried out,and the effects of PC on the microstructure and dislocation density of the alloy were analyzed.The results show that PC strengthens the migration of boundaries,and then the twin grains,most of which distribute in the coarse grains,“spheroidize”to equiaxed grains,thus separating the coarse grains and refining the microstructure.This process homogenizes the initial microstructure and eliminate the typically lamellar twin grains.Moreover,PC also strengthens the dislocation annihilation.When the specimens were annealed by PC at 300℃for 4 min,the dislocation density was even lower than that annealed by furnaces at 400℃for 3 h before deformation.Furthermore,dislocation annihilation is enhanced with the increase of peak current density and the decrease of pulsed frequency. 展开更多
关键词 pulsed current AZ31B magnesium alloy ANNEALING microstructure evolution TWINNING dislocation annihilation
在线阅读 下载PDF
Effects of Pulsed Current and Pulsed Magnetic Field Complex Pretreatment on Martensite Transformation of Cr5Steel during Continuous Cooling 被引量:1
11
作者 Qing-chun LI Li-juan LI +1 位作者 Guo-wei CHANG Qi-jie ZHAI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第12期1131-1137,共7页
Carbide precipitation and martensite transformation in Cr5 steel have been observed in situ by high-temper- ature confocal laser-scanning microscopy. In this way, the influences of pulsed current and pulsed magnetic f... Carbide precipitation and martensite transformation in Cr5 steel have been observed in situ by high-temper- ature confocal laser-scanning microscopy. In this way, the influences of pulsed current and pulsed magnetic field complex pretreatment on carbide precipitation and martensite transformation during continuous cooling have been studied. The results show that the electropulsing complex pretreatment promotes the precipitation of M7 C3-type car- bides at high temperature, increases the start and finish temperatures of martensite transformation, and extends the phase transformation time. Martensite prefers to nucleate in the austenite with less precipitation of carbides due to the chemically homogeneous distribution of solute atoms. 展开更多
关键词 pulsed current pulsed magnetic field PRETREATMENT martensite transformation
原文传递
Effect of flash thermal annealing by pulsed current on rotational anisotropy in exchange-biased NiFe/FeMn film
12
作者 Zhen Wang Shi-Jie Tan +2 位作者 Jun Li Bo Dai Yan-Ke Zou 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期543-548,共6页
In this paper, Ta/[NiFe(15 nm)/FeMn(10 nm)]/Ta exchange-biased bilayers are fabricated by magnetron sputtering, and their static and dynamic magnetic properties before and after rapid annealing treatment with puls... In this paper, Ta/[NiFe(15 nm)/FeMn(10 nm)]/Ta exchange-biased bilayers are fabricated by magnetron sputtering, and their static and dynamic magnetic properties before and after rapid annealing treatment with pulsed current are charac- terized by using a vibrating sample magnetometer (VSM) and a vector network analyzer (VNA), respectively. The exchange bias field He and static anisotropy field Hksta decrease from 118.45 Oe (10e = 79.5775 A.m-1) and 126.84 Oe at 0 V to 94.75 Oe and 102.31 Oe at 90 V, respectively, with increasing capacitor voltage, which supplies pulsed current to heat the sample. The effect of flash thermal annealing by pulsed current on the rotational anisotropy (Hrot), the difference value between static and dynamic magnetic anisotropy, is investigated particularly. The highest Hrot is obtained in the sample annealing with 45-V capacitor (3300 μF) voltage. According to the anisotropic magnetoresistance measurements, it can be explained by the fact that the temperature of the sample is around the blocking temperature of the exchange bias system (Tb) at 45 V, the critical temperature where the formation of more unstable antiferromagnetic grains occurs. 展开更多
关键词 rapid annealing SPUTTERING pulsed current rotational anisotropy
原文传递
Influence of Heat Input in Pulsed Current GTAW Process on Microstructure and Corrosion Resistance of Duplex Stainless Steel Welds 被引量:9
13
作者 M Yousefieh M Shamanian A Saatchi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第9期65-69,78,共6页
The high corrosion resistance of duplex stainless steel (DSS) is due to elements such as Cr, Mo and N, hut also depends on the microstructure. The best general properties are obtained with approximately equal amount... The high corrosion resistance of duplex stainless steel (DSS) is due to elements such as Cr, Mo and N, hut also depends on the microstructure. The best general properties are obtained with approximately equal amounts of austenite and ferrite and the absence of third phases such as σ(sigma) and Cr2N. In the present work the effect of heat input variations on the microstructure and corrosion resistance of a DSS UNS S32760 in artificial sea water media were studied. The corrosion resistance in 3.5 % of NaCl solution was evaluated by potentiostatic polarization tests at room temperature. It is found that the presence of sigma phase and Cr2N decreases the corrosion potential. The specimen with heat input of approximately 0.95 kJ/mm have the best corrosion characteristics, which is the result for the lack of deleterious phases such as sigma and Cr2 N and balanced ferrite austenite proportion. 展开更多
关键词 steel microstructure corrosion heat input pulse current GTAW
原文传递
Process Parameter Optimization of the Pulsed Current Argon Tungsten Arc Welding of Titanium Alloy 被引量:5
14
作者 M.Balasubramanian V.Jayabalan V.Balasubramanian 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第3期423-426,共4页
The selection of process parameters for obtaining optimal tensile properties in the pulsed current gas tungsten arc welding is presented. The tensile properties include ultimate tensile strength, yield strength and no... The selection of process parameters for obtaining optimal tensile properties in the pulsed current gas tungsten arc welding is presented. The tensile properties include ultimate tensile strength, yield strength and notch tensile strength. All these characteristics are considered together in the selection of process parameters by modified taguchi method to analyse the effect of each welding process parameter on tensile properties. Experimental results are furnished to illustrate the approach. 展开更多
关键词 Pulsing current Modified taguchi method Tensile properties
在线阅读 下载PDF
Numerical Calculation and Experimental Research on Crack Arrest by Detour Effect and Joule Heating of High Pulsed Current in Remanufacturing
15
作者 YU Jing ZHANG Hongchao +2 位作者 DENG Dewei HAO Shengzhi IQBAL Asif 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第4期745-753,共9页
The remanufacturing blanks with cracks were considered as irreparable. With utilization of detour effect and Joule heating of pulsed current, a technique to arrest the crack in martensitic stainless steel FV520B is de... The remanufacturing blanks with cracks were considered as irreparable. With utilization of detour effect and Joule heating of pulsed current, a technique to arrest the crack in martensitic stainless steel FV520B is developed. According to finite element theory, the finite element(FE) model of the cracked rectangular specimen is established firstly. Then, based on electro-thermo-structure coupled theory, the distributions of current density, temperature field, and stress field are calculated for the instant of energizing. Furthermore, the simulation results are verified by some corresponding experiments performed on high pulsed current discharge device of type HCPD-I. Morphology and microstructure around the crack tip before and after electro pulsing treatment are observed by optical microscope(OM) and scanning electron microscope(SEM), and then the diameters of fusion zone and heat affected zone(HAZ) are measured in order to contrast with numerical calculation results. Element distribution, nano-indentation hardness and residual stress in the vicinity of the crack tip are surveyed by energy dispersive spectrometer(EDS), scanning probe microscopy(SPM) and X-ray stress gauge, respectively. The results show that the obvious partition and refined grain around the crack tip can be observed due to the violent temperature change. The contents of carbon and oxygen in fusion zone and HAZ are higher than those in matrix, and however the hardness around the crack tip decreases. Large residual compressive stress is induced in the vicinity of the crack tip and it has the same order of magnitude for measured results and numerical calculation results that is 100 MPa. The relational curves between discharge energies and diameters of the fusion zone and HAZ are obtained by experiments. The difference of diameter of fusion zone between measured and calculated results is less than 18.3%. Numerical calculation is very useful to define the experimental parameters. An effective method to prevent further extension of the crack is presented and can provide a reference for the compressor rotor blade remanufacturing. 展开更多
关键词 REMANUFACTURING crack arrest numerical simulation MICROSTRUCTURE high pulse current
在线阅读 下载PDF
Realizing Ultra-fast Spheroidization of GCr15 Bearing Steel by Analyzing the Correlation of Carbide Dissolution Law and Pulsed Electric Current Parameters Through Machine Learning
16
作者 Zhongxue Wang Le Ren +2 位作者 Yating Zhang Mengcheng Zhou Xinfang Zhang 《Acta Metallurgica Sinica(English Letters)》 2025年第7期1207-1218,共12页
Traditional heat treatment methods require a significant amount of time and energy to affect atomic diffusion and enhance the spheroidization process of carbides in bearing steel,while pulsed current can accelerate at... Traditional heat treatment methods require a significant amount of time and energy to affect atomic diffusion and enhance the spheroidization process of carbides in bearing steel,while pulsed current can accelerate atomic diffusion to achieve ultra-fast spheroidization of carbides.However,the understanding of the mechanism by which different pulse current parameters regulate the dissolution behavior of carbides requires a large amount of experimental data to support,which limits the application of pulse current technology in the field of heat treatment.Based on this,quantify the obtained pulse current processing data to create an important dataset that could be applied to machine learning.Through machine learning,the mechanism of mutual influence between carbide regulation and various factors was elucidated,and the optimal spheroidization process parameters were determined.Compared to the 20 h required for traditional heat treatment,the application of pulsed electric current technology achieved ultra-fast spheroidization of GCr15 bearing steel within 90 min. 展开更多
关键词 Bearing steel pulsed electric current Machine learning SPHEROIDIZATION CARBIDE
原文传递
Pulsed electric current treatment: from regulating non-metallic inclusions to inhibiting submerged entry nozzle clogging
17
作者 Wen-wen Yu Jin-gang Qi Heng Cui 《Journal of Iron and Steel Research International》 2025年第4期833-848,共16页
Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,... Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,including bubble,electromagnetic stirring,filtration separation,fluid flow,and sedimentation,often struggle with the removal of fine inclusions.Apart from these known methods,pulsed electric current(PEC),as an emerging technology,has demonstrated immense potential and environmental advantages.PEC offers adjustable current parameters and simple equipment,making it an attractive alternative to traditional methods.Its green energy-saving features and excellent results in regulating inclusion morphology and migration,as well as inhibiting submerged entry nozzle(SEN)clogging,make it a promising technology.In comparison to continuous current technology,PEC has shown significant advantages in regulating inclusions,not only improving purification efficiency but also demonstrating outstanding performance in flow stability and energy consumption.The ability of PEC to efficiently reduce inclusion numbers enhances the purity and quality of molten steel,improving its mechanical properties.Currently,the theoretical basis for controlling the movement of inclusions by current is mainly composed of three major theories:the double electric layer theory,electromagnetic force reverse separation theory,and electric free energy drive theory.These theories together form an important framework for researchers to understand and optimize the behavior of impurity movement controlled by electric current.Looking ahead,PEC is expected to pave the way for new solutions in directional regulation of inclusion migration,efficient inclusion removal,SEN clogging prevention,and the purification of molten steel. 展开更多
关键词 pulsed electric current Non-metallic inclusion REGULATION Submerged entry nozzle CLOGGING
原文传递
Migration Behavior of Impurity Iron in Silicon Melt Under Pulsed Electric Current
18
作者 Mengcheng Zhou Yaxiong Dai +2 位作者 Changhao Liu Shengli Ding Xinfang Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第5期889-903,共15页
The impurity iron in silicon material will seriously affect the photoelectric conversion efficiency of silicon solar cells.However,the traditional silicon purification method has the disadvantages of long cycle,high e... The impurity iron in silicon material will seriously affect the photoelectric conversion efficiency of silicon solar cells.However,the traditional silicon purification method has the disadvantages of long cycle,high energy consumption and serious pollution.In this study,an efficient and green pulsed electric current purification technology is proposed.The electromigration effect of iron elements,the current density gradient driving of iron phase,and the gravity of iron phase all affect the migration behavior of iron phase in silicon melt under pulsed electric current.Regardless of the depth of electrode insertion into the silicon melt,the solubility of iron in silicon decreases under the pulsed electric current,which helps to form the iron phase.At the same time,the iron phase tends to sink toward the bottom under the influence of gravity.When the electrode is shallowly inserted,a non-uniform electric field is formed in the silicon melt,and the iron phase is mainly driven by the current density gradient to accelerate sink toward the bottom.When the electrode is fully inserted,an approximately uniform electric field is formed in the silicon melt,and iron elements are preferentially migrated to the cathode by electromigration,forming iron phase sinking at the cathode.The study of impurity iron migration behavior in silicon melt under pulsed electric current provides a new approach for the purification of polycrystalline silicon. 展开更多
关键词 Metallurgical silicon pulsed electric current Iron-rich phase current density gradient ELECTROMIGRATION
原文传递
Ultrafast annihilation of irradiation-induced defects using pulsed electric current for damage performance regeneration
19
作者 Biqian Li Rui Ma +1 位作者 Shu Li Xinfang Zhang 《Journal of Materials Science & Technology》 CSCD 2024年第27期247-262,共16页
As the most important irradiation-induced defects,dislocation loop and copper-rich nanocluster are the major contributors to the embrittlement of the neutron-irradiated reactor pressure vessel steels.In this study,suc... As the most important irradiation-induced defects,dislocation loop and copper-rich nanocluster are the major contributors to the embrittlement of the neutron-irradiated reactor pressure vessel steels.In this study,such nano-defects were introduced into the material by 3 MeV Fe ions up to the dose of 1 dpa at high temperature(290℃)to simulate neutron irradiation.It was found that pulsed electric current can effectively reduce 95%of irradiation-induced hardening.Correspondingly,the characterization results showed that almost all the dislocation loops disappeared and the quantity of copper-rich nanoclusters also reduced greatly at relatively low temperature(450℃),and the process took only 20 min.Mean-while,it was qualitatively proved by positron annihilation spectroscopy that the number of irradiation-induced vacancy-type defects and solute-enriched clusters was significantly decreased after electropuls-ing.Furthermore,under the pulsed electric field,the rapid annihilation of the dislocation loops due to their accelerated collision with vacancies can remove the nucleation sites of the copper-rich nanoclusters and make them become dispersed,further promoting the nanoclusters that lack nucleation sites dissolv-ing faster.Therefore,this electropulsing treatment provides a practical“in-situ”performance repair tech-nology to extend the service life of reactor pressure vessel steels by regulating the interaction between vacancies,interstitial atoms and irradiation-induced defects. 展开更多
关键词 Irradiation-induced defect Dislocation loop Copper-rich nanocluster pulsed electric current Performance regeneration
原文传递
Absolute Wall Thickness Measurement of Conducting Plates Using Pulsed Eddy Currents
20
作者 Victor-O. de Haan Riccardo Scottini 《Journal of Electromagnetic Analysis and Applications》 2024年第3期25-41,共17页
The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a prob... The method using pulsed eddy currents to determine the thickness of a conduction plate is extended to enable the simultaneous measurement of the plate thickness and material properties. For optimal performance, a probe must be designed depending on the thickness range that should be accessible. The need for a calibration of the material properties of a conducting plate to enable the measurement of its thickness has been removed. All that is needed is a probe with known dimensions and suitable hardware to create a current pulse and measure a transient magnetic induction. 展开更多
关键词 pulsed Eddy currents Wall Thickness Absolute and Relative Measurements
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部