We present a new method that can be used to calculate pulse-front distortion by measuring the spectral interference of two point-diffraction fields in their overlapped district. We demonstrate, for the first time, the...We present a new method that can be used to calculate pulse-front distortion by measuring the spectral interference of two point-diffraction fields in their overlapped district. We demonstrate, for the first time, the measurement of the pulse-front distortion of the pulse from a complex multi-pass amplification system, which exists in almost all high-power laser systems, and obtain the irregular pulse-front distribution. The method presented does not need any reference light or assumption about the pulse-front distribution, and has an accuracy of several femtoseconds.展开更多
In ultra-short laser pulses,small changes in dispersion properties before the final focusing mirror can lead to severe pulse distortions around the focus and therefore to very different pulse properties at the point o...In ultra-short laser pulses,small changes in dispersion properties before the final focusing mirror can lead to severe pulse distortions around the focus and therefore to very different pulse properties at the point of laser±matter interaction,yielding unexpected interaction results.The mapping between far-and near-field laser properties intricately depends on the spatial and angular dispersion properties as well as the focal geometry.For a focused Gaussian laser pulse under the influence of angular,spatial and group-delay dispersion,we derive analytical expressions for its pulse-front tilt,duration and width from a fully analytic expression for its electric field in the time±space domain obtained with scalar diffraction theory.This expression is not only valid in and near the focus but also along the entire propagation distance from the focusing mirror to the focus.Expressions relating angular,spatial and group-delay dispersion before focusing at an off-axis parabola,where they are well measurable,to the respective values in the pulse’s focus are obtained by a ray tracing approach.Together,these formulas are used to show in example setups that the pulse-front tilts of lasers with small initial dispersion can become several tens of degrees larger in the vicinity of the focus while being small directly in the focus.The formulas derived here provide the analytical foundation for observations previously made in numerical experiments.By numerically simulating Gaussian pulse propagation and measuring properties of the pulse at distances several Rayleigh lengths off the focus,we verify the analytic expressions.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10904132 and 11074225)the National Defense Science Technology Foundation of State Key Laboratory of High Temperature and Density Plasma Physics,China (Grant No. 9140C680604110C6805)
文摘We present a new method that can be used to calculate pulse-front distortion by measuring the spectral interference of two point-diffraction fields in their overlapped district. We demonstrate, for the first time, the measurement of the pulse-front distortion of the pulse from a complex multi-pass amplification system, which exists in almost all high-power laser systems, and obtain the irregular pulse-front distribution. The method presented does not need any reference light or assumption about the pulse-front distribution, and has an accuracy of several femtoseconds.
基金Center for Advanced Systems Understanding(CASUS)。
文摘In ultra-short laser pulses,small changes in dispersion properties before the final focusing mirror can lead to severe pulse distortions around the focus and therefore to very different pulse properties at the point of laser±matter interaction,yielding unexpected interaction results.The mapping between far-and near-field laser properties intricately depends on the spatial and angular dispersion properties as well as the focal geometry.For a focused Gaussian laser pulse under the influence of angular,spatial and group-delay dispersion,we derive analytical expressions for its pulse-front tilt,duration and width from a fully analytic expression for its electric field in the time±space domain obtained with scalar diffraction theory.This expression is not only valid in and near the focus but also along the entire propagation distance from the focusing mirror to the focus.Expressions relating angular,spatial and group-delay dispersion before focusing at an off-axis parabola,where they are well measurable,to the respective values in the pulse’s focus are obtained by a ray tracing approach.Together,these formulas are used to show in example setups that the pulse-front tilts of lasers with small initial dispersion can become several tens of degrees larger in the vicinity of the focus while being small directly in the focus.The formulas derived here provide the analytical foundation for observations previously made in numerical experiments.By numerically simulating Gaussian pulse propagation and measuring properties of the pulse at distances several Rayleigh lengths off the focus,we verify the analytic expressions.