期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Identification of Cardiac Risk Factors from ECG Signals Using Residual Neural Networks
1
作者 Divya Arivalagan Vignesh Ochathevan Rubankumar Dhanasekaran 《Congenital Heart Disease》 2025年第4期477-501,共25页
Background:The accurate identification of cardiac abnormalities is essential for proper diagnosis and effective treatment of cardiovascular diseases.Method:This work introduces an advanced methodology for detecting ca... Background:The accurate identification of cardiac abnormalities is essential for proper diagnosis and effective treatment of cardiovascular diseases.Method:This work introduces an advanced methodology for detecting cardiac abnormalities and estimating electrocardiographic age(ECG Age)using sophisticated signal processing and deep learning techniques.This study looks at six main heart conditions found in 12-lead electrocardiogram(ECG)data.It addresses important issues like class imbalances,missing lead scenarios,and model generalizations.A modified residual neural network(ResNet)architecture was developed to enhance the detection of cardiac abnormalities.Results:The proposed ResNet demonst rated superior performance when compared with two linear models and an alternative ResNet architectures,achieving an overall classification accuracy of 91.25%and an F1 score of 93.9%,surpassing baseline models.A comprehensive lead loss analysis was conducted,evaluating model performance across 4096 combinations of missing leads.The results revealed that pulse rate-based factors remained robust with up to 75%lead loss,while block-based factors experienced significant performance declines beyond the loss of four leads.Conclusion:This analysis highlighted the importance of addressing lead loss impacts to maintain a robust model.To optimize performance,targeted training approaches were developed for different conditions.Based on these insights,a grouping strategy was implemented to train specialized models for pulse rate-based and block-based conditions.This approach resulted in notable improvements,achieving an overall classification accuracy of 95.12%and an F1 score of 95.79%. 展开更多
关键词 ELECTROCARDIOGRAM 12-lead ECG cardiac abnormality detection ResNet machine learning deep learning electrocardiographic age lead loss analysis pulse rate-based factors block-based factors
在线阅读 下载PDF
Analysis and simulation of a coupled-cavity pulse compressor
2
作者 肖欧正 赵风利 贺祥 《Chinese Physics C》 SCIE CAS CSCD 2012年第11期1132-1135,共4页
An equivalent circuit model is built for a coupled-resonator pulse compressor. Based on the circuit, the general second order differential equation is derived and converted into the first order equation to save comput... An equivalent circuit model is built for a coupled-resonator pulse compressor. Based on the circuit, the general second order differential equation is derived and converted into the first order equation to save computing time. In order to analyze the transient response and optimize parameters for the pulse compressor, we have developed a simulation code. In addition, we have also designed a three-cavity pulse compressor to get the maximum energy multiplication factor. The size of the cavities and coupling apertures is determined by HFSS. 展开更多
关键词 pulse compressor power gain energy multiplication factor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部