The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings cent...The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings centered at 1029.9nm and 1032nm respectively with a polarization controller inserted between them are used to realize the wavelength switchable between 1029.9nm and 1032nm. The laser delivers different pulse widths of 7.5ps for 1030nm and 20ps for 1032nm. The maximum output power for both could reach -6.5mW at single pulse operation. The output wavelength couM be tuned to about 0.gnm intervals ranging from 1030.2nm to 1031.1 nm and from 1032.15nm to 1033.7nm with the temperature change of the fiber Bragg grating, respectively.展开更多
The wavelength-tunable rectangular mode-locking operation is demonstrated in an all-fiber laser based on semi- conductor saturable absorber mirror. As the dissipative soliton resonance signature, the pulse duration va...The wavelength-tunable rectangular mode-locking operation is demonstrated in an all-fiber laser based on semi- conductor saturable absorber mirror. As the dissipative soliton resonance signature, the pulse duration varies from 5SOps to 2.1 ns as a function o~ the increasing pump power. Correspondingly, the maximum pulse energy is 9.11 n3. Moreover, it is found that the wavelength tunable operation with a range of approximately 10 nm could be obtained by properly adjusting the polarization controllers. The characteristics of the rectangular pulses at different wavelengths are similar to each other. The demonstration of the wavelength tunable rectangular pulses would be beneficial to some applications for many fields such as spectroscopy and sensing research.展开更多
We reported on the generation of the dual-wavelength rectangular pulse in an erbium-doped fiber laser(EDFL)with a topological insulator saturable absorber.The rectangular pulse could be stably initiated with pulse wid...We reported on the generation of the dual-wavelength rectangular pulse in an erbium-doped fiber laser(EDFL)with a topological insulator saturable absorber.The rectangular pulse could be stably initiated with pulse width from 13.62 to 25.16 ns and fundamental repetition rate of 3.54 MHz by properly adjusting the pump power and the polarization state.In addition,we verified that the pulse shape of the dual-wavelength rectangular pulse can be affected by the total net cavity dispersion in the fiber laser.Furthermore,by properly rotating the polarization controllers,the harmonic mode-locking operation of the dual-wavelength rectangular pulse was also obtained.The dual-wavelength rectangular pulse EDFL would benefit some potential applications,such as spectroscopy,biomedicine,and sensing research.展开更多
基金Supported by the National High Technology Research and Development Program of China under Grant No 2014AA041901NSAF Foundation of the National Natural Science Foundation of China under Grant No U1330134+1 种基金the Opening Project of Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques under Grant No 2012ADL02the National Natural Science Foundation of China under Grant Nos 61308024 and 11174305
文摘The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings centered at 1029.9nm and 1032nm respectively with a polarization controller inserted between them are used to realize the wavelength switchable between 1029.9nm and 1032nm. The laser delivers different pulse widths of 7.5ps for 1030nm and 20ps for 1032nm. The maximum output power for both could reach -6.5mW at single pulse operation. The output wavelength couM be tuned to about 0.gnm intervals ranging from 1030.2nm to 1031.1 nm and from 1032.15nm to 1033.7nm with the temperature change of the fiber Bragg grating, respectively.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2014AA041901the NSAF Foundation of National Natural Science Foundation of China under Grant No U1330134+1 种基金the Opening Project of Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques under Grant No 2012ADL02the National Natural Science Foundation of China under Grant No 61308024
文摘The wavelength-tunable rectangular mode-locking operation is demonstrated in an all-fiber laser based on semi- conductor saturable absorber mirror. As the dissipative soliton resonance signature, the pulse duration varies from 5SOps to 2.1 ns as a function o~ the increasing pump power. Correspondingly, the maximum pulse energy is 9.11 n3. Moreover, it is found that the wavelength tunable operation with a range of approximately 10 nm could be obtained by properly adjusting the polarization controllers. The characteristics of the rectangular pulses at different wavelengths are similar to each other. The demonstration of the wavelength tunable rectangular pulses would be beneficial to some applications for many fields such as spectroscopy and sensing research.
基金supported by National Natural Science Foundation of China (No.612050346)the Shenzhen Municipal Science and Technology Plan (Nos.2010B090400306,JC201105160592A,and JCYJ 20120613150130014)
文摘We reported on the generation of the dual-wavelength rectangular pulse in an erbium-doped fiber laser(EDFL)with a topological insulator saturable absorber.The rectangular pulse could be stably initiated with pulse width from 13.62 to 25.16 ns and fundamental repetition rate of 3.54 MHz by properly adjusting the pump power and the polarization state.In addition,we verified that the pulse shape of the dual-wavelength rectangular pulse can be affected by the total net cavity dispersion in the fiber laser.Furthermore,by properly rotating the polarization controllers,the harmonic mode-locking operation of the dual-wavelength rectangular pulse was also obtained.The dual-wavelength rectangular pulse EDFL would benefit some potential applications,such as spectroscopy,biomedicine,and sensing research.