期刊文献+
共找到216篇文章
< 1 2 11 >
每页显示 20 50 100
Hydrodynamic Characteristics of an Underwater Manipulator in Pulsating Flow
1
作者 Xia Liu Derong Duan +2 位作者 Xiaoya Zhang Yujun Cheng Hui Zhang 《哈尔滨工程大学学报(英文版)》 2025年第3期503-517,共15页
Pulsating flow is a common condition for under water manipulators in Bohai Bay.This study aimed to investigate the effects of pulsation frequency and amplitude on the hydrodynamic characteristics of an underwater mani... Pulsating flow is a common condition for under water manipulators in Bohai Bay.This study aimed to investigate the effects of pulsation frequency and amplitude on the hydrodynamic characteristics of an underwater manipulator with different postures using the user-defined function (UDF) method. The lift coefficient (C_(L)), drag coefficient (C_(D)), and vortex shedding of the underwater manipulator in single-and dualarm forms were obtained. Results indicated that the maximum increase in the lift and drag coefficients subjected to the pulsation parameters was 24.45%and 28%, respectively, when the fluid flowed past a single arm. Compared with the single arm, the lift and drag coefficients of the arms were higher than those of the single arm when arm 2 was located upstream. Additionally, the pulsation frequency had no obvious effect on the manipulator, but the C_(L) and C_(D) of arm 2 showed an obvious increasing trend with an increase in pulsation amplitude. Meanwhile, when arm 2 was located downstream, the C_(L) and C_(D) of arm 2 were reduced by 16.38%and 1.15%, respectively, with an increase in the pulse frequency,and the maximum increase in the lift and dragcoefficients was 33.33%and 16.78%,respectively,with increasing pulsation amplitude.Moreover, the downstream wake morphology changed significantly, and a combined vortex phenomenon appeared. Finally, a theoretical basis for examining the hydrodynamic characteristics of marine engineering equipment was established to aid future marine resource exploitation. 展开更多
关键词 Underwater manipulator pulsating flow Hydrodynamic performance Vortex shedding Flow interference
在线阅读 下载PDF
Effect of SurfaceWettability on the Flow and Heat Transfer Performance of Pulsating Heat Pipe
2
作者 Wei Zhang Haojie Chen +1 位作者 Kunyu Cheng Yulong Zhang 《Frontiers in Heat and Mass Transfer》 2025年第1期361-381,共21页
The present work deals with the numerical study of the two-phase flow pattern and heat transfer characteristics of single-loop pulsating heat pipes(PHPs)under three modified surfaces(superhydrophilic evaporation secti... The present work deals with the numerical study of the two-phase flow pattern and heat transfer characteristics of single-loop pulsating heat pipes(PHPs)under three modified surfaces(superhydrophilic evaporation section paired with superhydrophilic,superhydrophobic,and hybrid condensation section).The Volume of Fluid(VOF)model was utilized to capture the phase-change process within the PHPs.The study also evaluated the influence of surface wettability on fluid patterns and thermo-dynamic heat transfer performance under various heat fluxes.The results indicated that the effective nucleation and detachment of droplets are critical factors influencing the thermal performance of the PHPs.The overall heat transfer performance of the superhydrophobic surface was significantly improved at low heat flux.Under medium to high heat flux,the superhydrophilic condensation section exhibits a strong oscillation effect and leads to the thickening of the liquid film.In addition,the hybrid surface possesses the heat transfer characteristics of both superhydrophilic and superhydrophobic walls.The hybrid condensation section exhibited the lowest thermal resistance by 0.45 K/W at the heat flux of 10731 W/m^(2).The thermal resistance is reduced by 13.1%and 5.4%,respectively,compared to the superhydrophobic and superhydrophilic conditions.The proposed surface-modification method for achieving highly efficient condensation heat transfer is helpful for the design and operation of device-cooling components. 展开更多
关键词 pulsating heat pipe surface wettability flow pattern heat transfer enhancement
在线阅读 下载PDF
Evolution law of pulsating seepage and thermal deformation by injecting high-temperature steam into coal for thermal coalbed methane recovery
3
作者 Zhiqiang Li Junliang Li +7 位作者 Jinsheng Chen Ali Karrech Ningchao Zhang Ju Chang Kaiqi Jin Yangyang Yu Hongbin Wang Aijie Wang 《Deep Underground Science and Engineering》 2025年第1期119-131,共13页
Chinese coal reservoirs are characterized by low pressure and low permeability,which need to be enhanced so as to increase production.However,conventional methods for permeability enhancement can only increase the per... Chinese coal reservoirs are characterized by low pressure and low permeability,which need to be enhanced so as to increase production.However,conventional methods for permeability enhancement can only increase the permeability in fractures,but not the ultra-low permeability in coal matrices.Attempts to enhance such impermeable structures lead to rapid attenuation of gas production,especially in the late stage of gas extraction.Thermal stimulation by injecting high-temperature steam is a promising method to increase gas production.The critical scientific challenges that still hinder its widespread application are related to the evolution law of permeability of high-temperature steam in coal and the thermal deformation of coal.In this study,an experimental approach is developed to explore the high-temperature steam seepage coupled with the thermal deformation in coal under triaxial stress.The tests were conducted using cylindrical coal specimens of?50 mm×100 mm.The permeability and thermal strain in coal were investigated when high-temperature steam was injected at151.11,183.20,213.65,and 239.76°C.The experimental results reveal for the first time that as the amount of injected fluid increases,the steam permeability shows periodic pulsation changes.This paper introduces and explains the main traits of this discovery that may shed more light on the seepage phenomenon.When the injected steam temperature increases,the amplitude of pulsating permeability decreases,whereas the frequency increases;meanwhile,the period becomes shorter,the pulsation peak appears earlier,and the stabilization time becomes longer.The average peak permeability shows a“U-shaped”trend,decreasing first and then increasing as the steam temperature increases.Meanwhile,with the extension of steam injection time,the axial,radial,and volumetric strains of coal show a stage-wise expansion characteristic at different temperatures of steam injection,except for the radial strains at 151.11°C.A two-phase flow theory of gas–liquid is adopted to elucidate the mechanism of pulsating seepage of steam.Moreover,the influencing mechanism of inward and outward thermal expansion on the permeability of coal is interpreted.The results presented in this paper provide new insight into the feasibility of thermal gas recovery by steam injection. 展开更多
关键词 coalbed methane PERMEABILITY PULSATION STEAM thermal deformation two-phase flow
原文传递
Advancing electrochemical drilling process via coupling of flow field and electric field in pulsating state generated by a novel tube tool
4
作者 Liang CHENG Xiaolei CHEN +1 位作者 Zhisen YE Yongjun ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第4期542-555,共14页
This paper introduces an improvement to electrochemical drilling process by coupling flow field and electric field in pulsating state. A novel tube with half-wedged shape at the end(HW-tube) is prepared, with both sid... This paper introduces an improvement to electrochemical drilling process by coupling flow field and electric field in pulsating state. A novel tube with half-wedged shape at the end(HW-tube) is prepared, with both sidewall and wedged part of the HW-tube insulated. Only the flat part is utilized to provide electric field for electrochemical drilling. By rotating the HW-tube, both flow field and electric field in pulsating state are generated, alternating in different positions within the inter-electrode gap(IEG). The pulsating flow field enhances the mass transfer process, while pulsating electric field disperses material dissolution process and distribution of electrolytic byproducts. Both pulsating fields are coupled at the same frequency, further enhancing the electrochemical drilling process. Simulation results indicate that both flow field and electric field in pulsating state are generated. Compared to the traditional tube, the HW-tube significantly reduces the number of residual particles in IEG, and this number is further reduced by increasing the rotation speed. Experimental results reveal that the surface quality and dimensional uniformity of small hole are improved with HW-tube. With feed rate of 2.22 mm/min, a small hole with diameter of 1.52± 0.017 mm is drilled, resulting in a surface roughness of 0.331 μm. 展开更多
关键词 Small holes Electrochemical drilling TOOLS pulsating flow field pulsating electric field
原文传递
Cyclic Pulsating Pressure Enhanced Segregating Structuration of Ultra-High Molecular Weight Polyethylene/Graphene Composites as High-performance Light-Weight EMI Shields 被引量:1
5
作者 Yun-Zhi Huang Xiao-Xiao Liu +3 位作者 Lan-Wei Li Guang-Ming Huang Zhao-Xia Huang Jin-Ping Qu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第7期958-967,I0008,共11页
Currently,the enhancement in electromagnetic interference(EMI)performance of polymeric composite generally relies on either improving electrical conductivity(σ)for stronger electromagnetic(EM)reflections or tailoring... Currently,the enhancement in electromagnetic interference(EMI)performance of polymeric composite generally relies on either improving electrical conductivity(σ)for stronger electromagnetic(EM)reflections or tailoring structure for higher EM resonances.Herein,we proposed a novel technique called cyclic pulsating pressure enhanced segregating structuration(CPP-SS),which can reinforce these two factors simultaneously.The structural information was supplied by optical microscopy(OM)and scanning electron microscopy(SEM),both of which confirmed the formation and evolution of segregate structured ultra-high molecular weight polyethylene(UHMWPE)/graphene composites.Then,the result showed that CPP-SS can significantly improve theσof samples.Ultimately,advanced specific EMI shielding efficiency of 31.1 d B/mm was achieved for UHMWPE/graphene composite at 1-mm thickness and a low graphene loading of 5 wt%.Meanwhile,it also confirmed that the intrinsic disadvantage of poor mechanical properties of conventional segregated structure composites can be surpassed.This work is believed to provide a fundamental understanding of the structural and performance evolutions of segregated structured composites prepared under CPPSS,and to bring us a simple and efficient approach for fabricating high-performance,strong and light-weight polymeric EMI shields. 展开更多
关键词 Cyclic pulsating pressure Segregated structure Ultra-high molecular weight polyethylene GRAPHENE Electromagnetic interface
原文传递
Stage separation of recoverable liquid launch vehicle by using moving pulsating ball analogue for propellant sloshing 被引量:1
6
作者 Yu LU Baozeng YUE +3 位作者 Bailong HAO Bole MA Feng LIU Yuanyuan CHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期360-370,共11页
In the process of stage separation of recoverable liquid launch vehicles,because of the large amount of residual fuel in the storage tanks,the influence of liquid sloshing on separation safety must be considered.Consi... In the process of stage separation of recoverable liquid launch vehicles,because of the large amount of residual fuel in the storage tanks,the influence of liquid sloshing on separation safety must be considered.Considering calculation simplicity and operation practicability,the Moving Pulsating Ball Model(MPBM)of large amplitude liquid sloshing is introduced into the calculation of launch vehicle stage separation.Combining the dynamic equation of the model with the energy relationship during"breathing movement",the formula calculating the force of liquid on the rigid body is derived.Compared with the calculations of commercial CFD calculation software,the accuracy of MPBM model is verified.Then,all the external forces and moments are applied to the rigid body of the stages,so that the translational and rotational dynamic equations of the stages are obtained respectively.According to the relative position of the two stages,the geometric shape of the interstage section and the engine of the second stage,the minimum clearance in the separation process can be decided to guarantee that the separation process is safe. 展开更多
关键词 Moving pulsating Ball Model(MPBM) Dynamics of stage separation Large amplitude sloshing Recoverable liquid launch vehicle Flight dynamics
原文传递
Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model
7
作者 Runqing CAO Zilong GUO +2 位作者 Wei CHEN Huliang DAI Lin WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期261-276,共16页
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid... Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system. 展开更多
关键词 curved pipe conveying fluid pulsating fluid geometrically exact model(GEM) nonlinear dynamics parametric vibration FLUTTER
在线阅读 下载PDF
Analysis of Vibrational Properties of Horn-Shaped Magneto-Elastic Single-Walled Carbon Nanotube Mass Sensor Conveying Pulsating Viscous Fluid Using Haar Wavelet Technique
8
作者 M.Mahaveer Sree Jayan Lifeng Wang +1 位作者 R.Selvamani N.Ramya 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第5期685-699,共15页
This research explores the dynamic behaviour of horn-shaped single-walled carbon nanotubes(HS-SWCNTs)conveying viscous nanofluid with pulsating the influence of a longitudinal magnetic field.The analysis utilizes Eule... This research explores the dynamic behaviour of horn-shaped single-walled carbon nanotubes(HS-SWCNTs)conveying viscous nanofluid with pulsating the influence of a longitudinal magnetic field.The analysis utilizes Euler-Bernoulli beam model,considering the variable cross section,and incorporating Eringen’s nonlocal theory to formulate the governing partial differential equation of motion.The instability domain of HS-SWCNTs is estimated using Galerkin’s approach.Numerical analysis is performed using the Haar wavelet method.The critical buckling load obtained in this study is compared with previous research to validate the proposed model.The results highlight the effectiveness of the proposed model in assessing the vibrational characteristics of a complex multi-physics system involving HS-SWCNTs.Dispersion graphs and tables are presented to visualize the numerical findings pertaining to various system parameters,including the nonlocal parameter,magnetic flux,Knudsen number,and viscous factor. 展开更多
关键词 Horn-shaped carbon nanotubes Dynamic stability Haar wavelet method pulsating nanoflow Nonlocal parameter Knudsen number(KN) Viscous fluid
原文传递
Influence of the Channel Design on the Heat Exchange Characteristics of Pulsating Flows in the Supply System of an Engine
9
作者 Leonid Plotnikov Danil Davydov +1 位作者 Dmitry Krasilnikov Vladislav Shurupov 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1309-1322,共14页
Heat engines based on reciprocating machines remain in demand as energy converters in a variety of industries around the world.The aim of the study was to evaluate the gas-dynamic,consumable and heat exchange characte... Heat engines based on reciprocating machines remain in demand as energy converters in a variety of industries around the world.The aim of the study was to evaluate the gas-dynamic,consumable and heat exchange characteristics of non-stationary air flows in a supply system with transverse profiling of valve channels based on experimental studies.Valve channels with cross sections in the form of a circle,square and triangle were used to control the consumable and heat exchange characteristics of the flows in the supply system of the reciprocatingengine model.The article presents data on changes in local velocity,volumetric airflow and instantaneous heat transfer coefficient of non-stationary airflow in supply systems with different valve channel designs.A spectral analysis of the pulsations of the local heat transfer coefficient was also performed.The Nusselt number was calculated for the studied supply systems.The figured valve channels lead to an increase in the volumetric airflow through the supply systemupto32%comparedwiththe basic configuration.The useof a square valve channel leads to suppression of heat transfer(drop is about 15%)compared to the basic supply system,and the use of a triangular valve channel causes an intensification of heat transfer(growth is about 17.5%).The obtained data can be useful for refining mathematical models,adjusting machine learning algorithms,and improving design methods for supply systems of reciprocating machines to improve their technical,economic,and environmental characteristics. 展开更多
关键词 Reciprocating-engine supply system figured valve channel transverse channel profiling pulsating air flow gas dynamics and heat transfer heat transfer pulsation analysis
在线阅读 下载PDF
A Novel Integrated Photovoltaic System with a Three-Dimensional Pulsating Heat Pipe
10
作者 Mahyar Kargaran Hamid Reza Goshayeshi Ali Reza Alizadeh Jajarm 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1461-1476,共16页
Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover... Solar energy is a valuable renewable energy source,and photovoltaic(PV)systems are a practical approach to harnessing this energy.Nevertheless,low energy efficiency is considered a major setback of the system.Moreover,high cell temperature and reflection of solar irradiance from the panel are considered chief culprits in this regard.Employing pulsating heat pipes(PHPs)is an innovative and useful approach to improving solar panel performance.This study presents the results of the power performance of a PV panel attached to a newly designed spiral pulsating heat pipe,while graphene oxide nanofluid with three different concentrations was used as a working fluid to maximize the efficacy of the solar panel.The study proved that the cooling method delivered high efficiency by reducing the temperature,especially in the middle of the day.Using nanofluid graphene oxide at concentrations of 0.2,0.4,and 0.8 gr/lit as the working fluid can reduce the thermal resistance of PHPs by over 30%,24%,and 15%,respectively.This,in turn,enhances the system’s electrical power output by approximately 9%,7%,and 6%,respectively. 展开更多
关键词 Solar panel NANOFLUID pulsating heat pipe heat transfer electrical efficiency
在线阅读 下载PDF
Experimental Analyses of Flow Pattern and Heat Transfer in a Horizontally Oriented Polymer Pulsating Heat Pipe withMerged Liquid Slugs
11
作者 Zhengyuan Pei Yasushi Koito 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1381-1397,共17页
Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels wi... Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 mm and a height of 1.1 mm.The evaporator and condenser sections were 25 and 50 mm long,respectively,and the adiabatic section in between was 75mmlong.Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene,the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP.The PHP was charged with hydrofluoroether-7100.In the experiments,the evaporator section was heated,and the condenser section was cooled using high-temperature and low-temperature thermostatic baths,respectively.Flow patterns of the working fluid were obtained with temperature distributions of the PHP.A mathematical model was developed to analyze the flow patterns.Themerged liquid slugs were observed in every two channels,and their oscillation characteristics were found to be approximately the same in time and space.It was also found that the oscillations of the merged liquid slugs became slower,but the heat transfer rate of the PHP increased with a decrease in the filling ratio of the working fluid.This is because vapor condensation was enhanced in vapor plugs as the filling ratio decreased.However,the filling ratio had a lower limit,and the heat transfer rate was maximum when the filling ratio was 40.6%in the present experimental range. 展开更多
关键词 pulsating heat pipe polymer heat pipe visualization experiment flow pattern analysis heat transfer enhancement
在线阅读 下载PDF
Solitary waves forming pulsating thermal plumes and their implications for multiple eruption events in large igneous provinces
12
作者 Urmi Dutta Nibir Mandal 《Episodes》 2024年第2期227-239,共13页
In Earth’s mantle,gravity instabilities initiated by density inversion lead to upwelling of hot materials as plumes.This study focuses upon the ascent dynamics of plumes to provide an explanation of the periodic mult... In Earth’s mantle,gravity instabilities initiated by density inversion lead to upwelling of hot materials as plumes.This study focuses upon the ascent dynamics of plumes to provide an explanation of the periodic multiple eruption events in large igneous provinces(LIP)and hotspots.We demonstrate that depending on physical conditions,plumes can either ascend in a continuous process with a single,large head trailing into a long slender tail,or alternatively,they ascend in a pulsating fashion producing multiple inaxis heads.Based on the Volume of Fluid(VOF)method,we performed computational fluid dynamics(CFD)simulations to constrain the thermo-mechanical conditions that decide the continuous versus pulsating dynamics.The simulations suggest the density(ρ^(*))and the viscosity(R)ratios of the ambient to the plume and the influx rates(Re)are the prime factors in controlling the ascent dynamics.The simulations could also predict thermal events near the surface causing eruption periodically as pulses.The pulsating plume model explains the multiple eruption events in different LIPs and our simulation results predict that variation in the temperature of the source layer can cause a range of timescale for this periodicity. 展开更多
关键词 density inversion gravity instabilities solitary waves eruption events ascent dynamics pulsating thermal plumes large igneous provinces large igneous provinces lip
在线阅读 下载PDF
Propagation Dynamics of Forced Pulsating Waves for a Time Periodic Lotka-Volterra Cooperative System with Nonlocal Effects in Shifting Habitats
13
作者 Zewen Gong 《Journal of Applied Mathematics and Physics》 2024年第10期3402-3421,共20页
In this paper, we will concern the existence, asymptotic behaviors and stability of forced pulsating waves for a Lotka-Volterra cooperative system with nonlocal effects under shifting habitats. By using the alternativ... In this paper, we will concern the existence, asymptotic behaviors and stability of forced pulsating waves for a Lotka-Volterra cooperative system with nonlocal effects under shifting habitats. By using the alternatively-coupling upper-lower solution method, we establish the existence of forced pulsating waves, as long as the shifting speed falls in a finite interval where the endpoints are obtained from KPP-Fisher speeds. The asymptotic behaviors of the forced pulsating waves are derived. Finally, with proper initial, the stability of the forced pulsating waves is studied by the squeezing technique based on the comparison principle. 展开更多
关键词 Nonlocal Effects Time Periodic Lotka-Volterra System Forced pulsating Waves Shifting Habitats
在线阅读 下载PDF
Development of a Pipeline Pulsating Pressure Excitation Device and System
14
作者 Yong Su Wu-qi Gong 《风机技术》 2024年第5期63-72,共10页
The high turbulence of unstable combustion in the working process of liquid rocket engine will cause periodic pressure pulsation.Therefore,a pressure pulsation device that is easy to reuse,broadband,suited for poisono... The high turbulence of unstable combustion in the working process of liquid rocket engine will cause periodic pressure pulsation.Therefore,a pressure pulsation device that is easy to reuse,broadband,suited for poisonous media,and high pressure is designed and produced.Numerical and experimental studies show that the pulsator produces stable pressure waveforms at different flow rates,pressures,and frequencies,while the pressure waveform amplitude at the excitation frequency is larger.The pressure waveform amplitude increases exponentially with the flow rate and with smaller gaps and linear pressure increasing.The pressure waveform amplitude varies greatly at different frequencies along the pipeline.As the frequency increases,the pressure waveform amplitude of the excitation increases first and then decreases.The pressure waveform amplitude at low frequencies changes little along the pipeline.The pressure waveform amplitude at medium frequencies readily couples to the pipeline flow field and increases its value.The pressure waveform amplitude at high frequencies attenuates along the pipeline,where attenuation increases with frequency.The ability of the pulsator to provide stable excitation and high pressure is verified through normal and high pressure testsindifferentpipelinesystems. 展开更多
关键词 Pulsator Pressure FLUCTUATION High-pressure Dynamic Characteristic Rocket Engine
在线阅读 下载PDF
Pulsating hydraulic fracturing technology in low permeability coal seams 被引量:13
15
作者 Wang Wenchao Li Xianzhong +1 位作者 Lin Baiquan Zhai Cheng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期681-685,共5页
Based on the difficult situation of gas drainage in a single coal bed of high gas content and low perme- ability, we investigate the technology of pulsating hydraulic pressure relief, the process of crank plunger move... Based on the difficult situation of gas drainage in a single coal bed of high gas content and low perme- ability, we investigate the technology of pulsating hydraulic pressure relief, the process of crank plunger movement and the mechanism of pulsating pressure formation using theoretical research, mathematical modeling and field testing. We analyze the effect of pulsating pressure on the formation and growth of fractures in coal by using the pulsating hydraulic theory in hydraulics. The research results show that the amplitude of fluctuating pressure tends to increase in the case where the exit is blocked, caused by pulsating pressure reflection and frictional resistance superposition, and it contributes to the growth of fractures in coal. The crack initiation pressure of pulsating hydraulic fracturing is 8 MPa, which is half than that of normal hydraulic fracturing; the pulsating hydraulic fracturing influence radius reaches 8 m. The total amount of gas extraction is increased by 3.6 times, and reaches 50 LJmin at the highest point. The extraction flow increases greatly, and is 4 times larger than that of drilling without fracturing and 1.2 times larger than that of normal hydraulic fracturing. The technology provides a technical measure for gas drainage of high gas content and low permeability in the single coal bed. 展开更多
关键词 Gas drainage pulsating hydraulic fracturing Fatigue damage Permeability improvement
在线阅读 下载PDF
NONLINEAR DYNAMICS AND SYNCHRONIZATION OF TWO COUPLED PIPES CONVEYING PULSATING FLUID 被引量:6
16
作者 Qiao Ni Zilong Zhang +2 位作者 Lin Wang Qin Qian Min Tang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2014年第2期162-171,共10页
In this paper, the nonlinear dynamical behavior of two coupled pipes conveying pulsating fluid is studied. The connection between the two pipes is considered as a distributed linear spring. Based on this consideration... In this paper, the nonlinear dynamical behavior of two coupled pipes conveying pulsating fluid is studied. The connection between the two pipes is considered as a distributed linear spring. Based on this consideration, the equations of motion of the coupled two-pipe system are obtained. The two coupled nonlinear partial differential equations, discretized using the fourth- order Galerkin method, are solved by a fourth-order Runge-Kutta integration algorithm. Results show that the connection stiffness has a significant effect on the dynamical behavior of the coupled system. It is found that for some parameter values the motion types of the two pipes might be synchronous. 展开更多
关键词 pipe conveying pulsating fluid nonlinear dynamics coupled two-pipe system SYNCHRONIZATION
原文传递
Interactions of adjacent pulsating, erupting and creeping solitons 被引量:3
17
作者 宋丽军 李录 周国生 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第1期148-153,共6页
This paper investigates the adjacent interactions of three novel solitons for the quintic complex Ginzburg-Landau equation, which are plain pulsating, erupting and creeping solitons. It is found that different perform... This paper investigates the adjacent interactions of three novel solitons for the quintic complex Ginzburg-Landau equation, which are plain pulsating, erupting and creeping solitons. It is found that different performances are presented for different solitons due to isolated regions of the parameter space where they exist. For example, plain pulsating and erupting solitons exhibit mutual annihilation during collisions with the decrease of total energy, but for creeping soliton, the two adjacent pulses present soliton fusion without any loss of energy. Otherwise, the method for restraining the interactions is also found and it can suppress interactions between these two adjacent pulses effectively. 展开更多
关键词 pulsating soliton erupting soliton creeping soliton adjacent interaction
原文传递
Heat Transfer Properties and Chaotic Analysis of Parallel Type Pulsating Heat Pipe 被引量:2
18
作者 史维秀 李惟毅 +1 位作者 潘利生 谈西峰 《Transactions of Tianjin University》 EI CAS 2011年第6期435-439,共5页
The refrigerant mixture of ethanol aqueous was applied to the parallel type pulsating heat pipe (PHP). The operation characteristics of the PHP were analyzed by means of experiment and nonlinear chaotic theory. Moreov... The refrigerant mixture of ethanol aqueous was applied to the parallel type pulsating heat pipe (PHP). The operation characteristics of the PHP were analyzed by means of experiment and nonlinear chaotic theory. Moreover, the relationship between the running state and attractor was described. The results indicate that starting power, stable running power and dry burning transition power are about 64.08 W, 148.68 W and 234.0 W respectively. The cycle and amplitude of PHP initially decrease and then increase with the increasing power. However, the data are welldistributed in a certain range. The running state is in agreement with the attractors, and the changing process for attractors is as follows: the attractors first disperse in the whole phase space, then present mass status, and finally show band distribution. 展开更多
关键词 parallel type pulsating heat pipe ethanol aqueous ATTRACTOR chaotic analysis
在线阅读 下载PDF
Experimental study on effect of inclination angles to ammonia pulsating heat pipe 被引量:7
19
作者 Xue Zhihu Qu Wei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第5期1122-1127,共6页
In this paper, a novel study on performance of closed loop pulsating heat pipe(CLPHP)using ammonia as working fluid is experimented. The tested CLPHP, consisting of six turns, is fully made of quartz glass tubes wit... In this paper, a novel study on performance of closed loop pulsating heat pipe(CLPHP)using ammonia as working fluid is experimented. The tested CLPHP, consisting of six turns, is fully made of quartz glass tubes with 6 mm outer diameter and 2 mm inner diameter. The filling ratio is50%. The visualization investigation is conducted to observe the oscillation and circulation flow in the CLPHP. In order to investigate the effects of inclination angles to thermal performance in the ammonia CLPHP, four case tests are studied. The trends of temperature fluctuation and thermal resistance as the input power increases at different inclination angles are highlighted. The results show that it is very easy to start up and circulate for the ammonia CLPHP at an inclining angle.The thermal resistance is low to 0.02 K/W, presenting that heat fluxes can be transferred from heating section to cooling section very quickly. It is found that the thermal resistance decreases as the inclination angle increases. At the horizontal operation, the ammonia CLPHP can be easy to start up at low input power, but hard to circulate. In this case, once the input power is high,the capillary tube in heating section will be burnt out, leading to worse thermal performance with high thermal resistance. 展开更多
关键词 Ammonia Inclination angles pulsating heat pipe Thermal performance Thermal resistance
原文传递
Visual Study on Flow and Operational Characteristics of Flat Plate Closed Loop Pulsating Heat Pipes 被引量:2
20
作者 杨洪海 Groll Manfred Khandekar Sameer 《Journal of Donghua University(English Edition)》 EI CAS 2009年第1期80-84,共5页
This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined d... This paper presents an experimental study including visualization on a flat plate closed loop pulsating heat pipes.It consists of a total of 40 channels with square cross section(2 mm×2 mm,165 mm long) machined directly on an aluminum plate(180 mm×120 mm×3 mm) covered by a transparent plate.The working fluid employed is ethanol.As a result,various flow patterns and their transitions are observed and found to be related to the fluid fill ratio,input heat load and the device orientation.Also the operational characteristics and working mechanism are discussed. 展开更多
关键词 flat plate closed loop pulsating heat pipes fill ratio flow patterns operational characteristics
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部