Fourier Ptychographic Microscopy(FPM)is a high-throughput computational optical imaging technology reported in 2013.It effectively breaks through the trade-off between high-resolution imaging and wide-field imaging.In...Fourier Ptychographic Microscopy(FPM)is a high-throughput computational optical imaging technology reported in 2013.It effectively breaks through the trade-off between high-resolution imaging and wide-field imaging.In recent years,it has been found that FPM is not only a tool to break through the trade-off between field of view and spatial resolution,but also a paradigm to break through those trade-off problems,thus attracting extensive attention.Compared with previous reviews,this review does not introduce its concept,basic principles,optical system and series of applications once again,but focuses on elaborating the three major difficulties faced by FPM technology in the process from“looking good”in the laboratory to“working well”in practical applications:mismatch between numerical model and physical reality,long reconstruction time and high computing power demand,and lack of multi-modal expansion.It introduces how to achieve key technological innovations in FPM through the dual drive of Artificial Intelligence(AI)and physics,including intelligent reconstruction algorithms introducing machine learning concepts,optical-algorithm co-design,fusion of frequency domain extrapolation methods and generative adversarial networks,multi-modal imaging schemes and data fusion enhancement,etc.,gradually solving the difficulties of FPM technology.Conversely,this review deeply considers the unique value of FPM technology in potentially feeding back to the development of“AI+optics”,such as providing AI benchmark tests under physical constraints,inspirations for the balance of computing power and bandwidth in miniaturized intelligent microscopes,and photoelectric hybrid architectures.Finally,it introduces the industrialization path and frontier directions of FPM technology,pointing out that with the promotion of the dual drive of AI and physics,it will generate a large number of industrial application case,and looks forward to the possibilities of future application scenarios and expansions,for instance,body fluid biopsy and point-of-care testing at the grassroots level represent the expansion of the growth market.展开更多
Ptychography is a diffraction-based X-ray microscopy technique in which an extended sample is scanned by a coherent beam with overlapped illuminated areas and complex transmission function of the sample is obtained by...Ptychography is a diffraction-based X-ray microscopy technique in which an extended sample is scanned by a coherent beam with overlapped illuminated areas and complex transmission function of the sample is obtained by applying iterative phase retrieval algorithms to the diffraction patterns recorded at each scanned position.It permits quantitatively imaging of non-crystalline specimens at a resolution limited only by the X-ray wavelength and the maximal scattering angle detected.In this paper,the development of soft X-ray ptychography method at the BL08U1 A beamline of Shanghai Synchrotron Radiation Facility is presented.The experimental setup,experimental parameters selection criteria,and post-experimental data analyzing procedures are presented in detail with a prospect of high-resolution image reconstruction in real time.The performance of this newly implemented method is demonstrated through the measurements of a resolution test pattern and two real samples:Pt-Co alloy nanoparticles and a breast cancer cell.The results indicate that strong scattering specimens can be reconstructed to sub-20 nm resolution,while a sub-25 nm resolution for biological specimens can be achieved.展开更多
An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and...An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and the OTF of an imaging system with unknown aberrations simultaneously. This model overcomes the difficult problem of OTF estimation that the previous IFP faces. The effectiveness of this algorithm is demonstrated by numerical simulations, and the superior reconstruction is presented. We believe that the reported algorithm can extend the original IFP for more complex conditions and may provide a solution by using structured light for characterization of optical systems' aberrations.展开更多
High-resolution seeing through complex scattering media such as turbid water,biological tissues,and mist is a significant challenge because the strong scattering scrambles the light paths and forms the scattering wall...High-resolution seeing through complex scattering media such as turbid water,biological tissues,and mist is a significant challenge because the strong scattering scrambles the light paths and forms the scattering wall.We propose an active polarized iterative optimization approach for high-resolution imaging through complex scattering media.By acquiring a series of sub-polarized images,we can capture the diverse pattern-illuminated images with various high-frequency component information caused by the Brownian motion of complex scattering materials,which are processed using the common-mode rejection of polarization characteristics to extract target information from scattering medium information.Following that,our computational reconstruction technique employs an iterative optimization algorithm that commences with patternilluminated Fourier ptychography for reconstructing the high-resolution scene.It is extremely important that our approach for high-resolution imaging through complex scattering media is not limited by priori information and optical memory effect.The proposed approach is suitable for not only dynamic but also static scattering media,which may find applications in the biomedicine field,such as skin abnormalities,non-invasive blood flow,and superficial tumors.展开更多
同步辐射光源凭借其高亮度、高相干性等独特优势,在科研领域中取得了广泛的应用,在一众成像方法中,其与叠层成像技术的结合备受关注。叠层成像技术通过逐点交叠扫描的方式,采集样品的衍射图样,并利用冗余信息迭代重建样品的复振幅分布...同步辐射光源凭借其高亮度、高相干性等独特优势,在科研领域中取得了广泛的应用,在一众成像方法中,其与叠层成像技术的结合备受关注。叠层成像技术通过逐点交叠扫描的方式,采集样品的衍射图样,并利用冗余信息迭代重建样品的复振幅分布。随着光学成像元件的不断发展和应用场景的拓展,目前已在扫描记录过程和重建算法领域发展出了多种快速叠层成像方法。该文概述了高能同步辐射光源(High Energy Photon Source,HEPS)的进展及叠层成像的基本原理,并从飞行扫描技术、多光束扫描技术和深度学习重建算法3个方面具体介绍了同步辐射中快速叠层成像技术的最新研究进展。展开更多
Label-free 3D tomography has attracted growing attention in biological imaging due to its inherent resistance to phototoxicity and concise system configuration.Among existing techniques,Fourier ptychographic tomograph...Label-free 3D tomography has attracted growing attention in biological imaging due to its inherent resistance to phototoxicity and concise system configuration.Among existing techniques,Fourier ptychographic tomography(FPT)stands out for high-resolution refractive index(RI)reconstruction from noninterferometric measurements,avoiding coherent noise and phase instability-key limitations of optical diffraction tomography.However,conventional FPT suffers from significant artifacts and high computational demands,especially for multiscattering samples and long-term observation.Here,we introduce physicsinformed aberration-corrected meta neural representation(PAMR),an advanced self-supervised framework that integrates neural representation with physics prior,meta-learning optimization,and adaptive aberration correction.Simulations and experiments show that PAMR produces high-fidelity 3D reconstructions with reduced artifacts and strong optical section ability,achieving 137 and 550 nm resolution for lateral and axial,respectively.Moreover,PAMR exhibits superior sparse-view robustness,sustaining high-quality with 75%view reduction.Through the meta-learning strategy,the reconstruction speed of dynamic volumes could be increased by 10 times.Applications include 3D RI imaging of multiscattering C.elegans and long-term 3D observation of HeLa cells,showing detailed organelle structures and interactions.As a generalizable approach combining computational efficiency with physical accuracy,PAMR provides an advanced algorithm for label-free 3D microscopy,with broad applicability across biomedical research.展开更多
1.Introduction Nowadays,lithium-ion batteries(LIBs)have been extensively applied in portable electronic devices,electric vehicles,and energy storage.The increasing demands of energy density and cycle life encourage co...1.Introduction Nowadays,lithium-ion batteries(LIBs)have been extensively applied in portable electronic devices,electric vehicles,and energy storage.The increasing demands of energy density and cycle life encourage considerable research on the mechanisms of battery failure and the synthesis of new materials.Cathodes of LIBs,as the key component determining energy density and capacity,have been widely investigated.Considerable research has been conducted to reveal the degradation mechanisms of LIB cathodes,including bulk structure degradation in the form of phase transformations[1-4],point/extended defect formation[5],cracking[6,7],and cavitation[8-10],surface phase transformation into cationdensified phases[11-14],gassing[15],transition metal dissolution[16,17],and over-growth of the cathode-electrolyte interphases(CEIs)[18,19].展开更多
基金National Natural Science Foundation of China(No.12574332)the Space Optoelectronic Measurement and Perception Lab.,Beijing Institute of Control Engineering(No.LabSOMP-2023-10)Major Science and Technology Innovation Program of Xianyang City(No.L2024-ZDKJ-ZDCGZH-0021)。
文摘Fourier Ptychographic Microscopy(FPM)is a high-throughput computational optical imaging technology reported in 2013.It effectively breaks through the trade-off between high-resolution imaging and wide-field imaging.In recent years,it has been found that FPM is not only a tool to break through the trade-off between field of view and spatial resolution,but also a paradigm to break through those trade-off problems,thus attracting extensive attention.Compared with previous reviews,this review does not introduce its concept,basic principles,optical system and series of applications once again,but focuses on elaborating the three major difficulties faced by FPM technology in the process from“looking good”in the laboratory to“working well”in practical applications:mismatch between numerical model and physical reality,long reconstruction time and high computing power demand,and lack of multi-modal expansion.It introduces how to achieve key technological innovations in FPM through the dual drive of Artificial Intelligence(AI)and physics,including intelligent reconstruction algorithms introducing machine learning concepts,optical-algorithm co-design,fusion of frequency domain extrapolation methods and generative adversarial networks,multi-modal imaging schemes and data fusion enhancement,etc.,gradually solving the difficulties of FPM technology.Conversely,this review deeply considers the unique value of FPM technology in potentially feeding back to the development of“AI+optics”,such as providing AI benchmark tests under physical constraints,inspirations for the balance of computing power and bandwidth in miniaturized intelligent microscopes,and photoelectric hybrid architectures.Finally,it introduces the industrialization path and frontier directions of FPM technology,pointing out that with the promotion of the dual drive of AI and physics,it will generate a large number of industrial application case,and looks forward to the possibilities of future application scenarios and expansions,for instance,body fluid biopsy and point-of-care testing at the grassroots level represent the expansion of the growth market.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.11225527,11575283,11505277)the Ministry of Science and Technology of China(2012CB825705)
文摘Ptychography is a diffraction-based X-ray microscopy technique in which an extended sample is scanned by a coherent beam with overlapped illuminated areas and complex transmission function of the sample is obtained by applying iterative phase retrieval algorithms to the diffraction patterns recorded at each scanned position.It permits quantitatively imaging of non-crystalline specimens at a resolution limited only by the X-ray wavelength and the maximal scattering angle detected.In this paper,the development of soft X-ray ptychography method at the BL08U1 A beamline of Shanghai Synchrotron Radiation Facility is presented.The experimental setup,experimental parameters selection criteria,and post-experimental data analyzing procedures are presented in detail with a prospect of high-resolution image reconstruction in real time.The performance of this newly implemented method is demonstrated through the measurements of a resolution test pattern and two real samples:Pt-Co alloy nanoparticles and a breast cancer cell.The results indicate that strong scattering specimens can be reconstructed to sub-20 nm resolution,while a sub-25 nm resolution for biological specimens can be achieved.
基金Supported by the National Natural Science Foundation of China under Grant No 61205144the Research Project of National University of Defense Technology under Grant No JC13-07-01the Key Laboratory of High Power Laser and Physics of Chinese Academy of Sciences
文摘An optical transfer function (OTF) reconstruction model is first embedded into incoherent Fourier ptychography (IFP). The leading result is a proposed algorithm that can recover both the super-resolution image and the OTF of an imaging system with unknown aberrations simultaneously. This model overcomes the difficult problem of OTF estimation that the previous IFP faces. The effectiveness of this algorithm is demonstrated by numerical simulations, and the superior reconstruction is presented. We believe that the reported algorithm can extend the original IFP for more complex conditions and may provide a solution by using structured light for characterization of optical systems' aberrations.
基金supported by the National Natural Science Foundation of China(Grant Nos.62205259,62075175,62105254,and 62375212)the National Key Laboratory of Infrared Detection Technologies(Grant No.IRDT-23-06)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.XJSJ24028,XJS222202,ZYTS24097,and ZYTS24095)the Open Research Fund of Beijing Key Laboratory of Advanced Optical Remote Sensing Technology.
文摘High-resolution seeing through complex scattering media such as turbid water,biological tissues,and mist is a significant challenge because the strong scattering scrambles the light paths and forms the scattering wall.We propose an active polarized iterative optimization approach for high-resolution imaging through complex scattering media.By acquiring a series of sub-polarized images,we can capture the diverse pattern-illuminated images with various high-frequency component information caused by the Brownian motion of complex scattering materials,which are processed using the common-mode rejection of polarization characteristics to extract target information from scattering medium information.Following that,our computational reconstruction technique employs an iterative optimization algorithm that commences with patternilluminated Fourier ptychography for reconstructing the high-resolution scene.It is extremely important that our approach for high-resolution imaging through complex scattering media is not limited by priori information and optical memory effect.The proposed approach is suitable for not only dynamic but also static scattering media,which may find applications in the biomedicine field,such as skin abnormalities,non-invasive blood flow,and superficial tumors.
文摘同步辐射光源凭借其高亮度、高相干性等独特优势,在科研领域中取得了广泛的应用,在一众成像方法中,其与叠层成像技术的结合备受关注。叠层成像技术通过逐点交叠扫描的方式,采集样品的衍射图样,并利用冗余信息迭代重建样品的复振幅分布。随着光学成像元件的不断发展和应用场景的拓展,目前已在扫描记录过程和重建算法领域发展出了多种快速叠层成像方法。该文概述了高能同步辐射光源(High Energy Photon Source,HEPS)的进展及叠层成像的基本原理,并从飞行扫描技术、多光束扫描技术和深度学习重建算法3个方面具体介绍了同步辐射中快速叠层成像技术的最新研究进展。
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3401100)the National Natural Science Foundation of China(Grant Nos.22534002,T2225014,62405099,32401253,and 62375095)+2 种基金the China Postdoctoral Science Foundation(Grant Nos.2024M750994 and 2024M761020)the Postdoctoral Project of Hubei Province(Grant Nos.2024HBBHCXA015 and 2024HBBHCXA013)the Key Research and Development Project of Hubei Province(Grant Nos.2024BCB011 and 2024BCB112).
文摘Label-free 3D tomography has attracted growing attention in biological imaging due to its inherent resistance to phototoxicity and concise system configuration.Among existing techniques,Fourier ptychographic tomography(FPT)stands out for high-resolution refractive index(RI)reconstruction from noninterferometric measurements,avoiding coherent noise and phase instability-key limitations of optical diffraction tomography.However,conventional FPT suffers from significant artifacts and high computational demands,especially for multiscattering samples and long-term observation.Here,we introduce physicsinformed aberration-corrected meta neural representation(PAMR),an advanced self-supervised framework that integrates neural representation with physics prior,meta-learning optimization,and adaptive aberration correction.Simulations and experiments show that PAMR produces high-fidelity 3D reconstructions with reduced artifacts and strong optical section ability,achieving 137 and 550 nm resolution for lateral and axial,respectively.Moreover,PAMR exhibits superior sparse-view robustness,sustaining high-quality with 75%view reduction.Through the meta-learning strategy,the reconstruction speed of dynamic volumes could be increased by 10 times.Applications include 3D RI imaging of multiscattering C.elegans and long-term 3D observation of HeLa cells,showing detailed organelle structures and interactions.As a generalizable approach combining computational efficiency with physical accuracy,PAMR provides an advanced algorithm for label-free 3D microscopy,with broad applicability across biomedical research.
基金supported by the National Natural Science Foundat ion of China(52388201 and 51525102)。
文摘1.Introduction Nowadays,lithium-ion batteries(LIBs)have been extensively applied in portable electronic devices,electric vehicles,and energy storage.The increasing demands of energy density and cycle life encourage considerable research on the mechanisms of battery failure and the synthesis of new materials.Cathodes of LIBs,as the key component determining energy density and capacity,have been widely investigated.Considerable research has been conducted to reveal the degradation mechanisms of LIB cathodes,including bulk structure degradation in the form of phase transformations[1-4],point/extended defect formation[5],cracking[6,7],and cavitation[8-10],surface phase transformation into cationdensified phases[11-14],gassing[15],transition metal dissolution[16,17],and over-growth of the cathode-electrolyte interphases(CEIs)[18,19].