Following the recent paper(Teittinen et al 2019 New J. Phys. 21 123041), one can see that in general there is no simple relation between non-Markovianity and quantum speed limit. Here, we investigate the connection be...Following the recent paper(Teittinen et al 2019 New J. Phys. 21 123041), one can see that in general there is no simple relation between non-Markovianity and quantum speed limit. Here, we investigate the connection between quantum speed limit time and non-Markovianity of an atom in structured environments(reservoirs) whose dynamics is governed by an exact pseudomode master equation(Garraway 1997 Phys. Rev. A 55 2290). In particular, we find an inverse relation between them, which means that the non-Markovian feature of the quantum process leads to speedup of evolution. Thus, there is a link between quantum speedup and memory effects for specific cases of dynamical evolution. Our results might shed light on the relationship between the speedup of quantum evolution and the backflow of information from the environment to the system.展开更多
The decay dynamic of an excited quantum emitter(QE)is one of the most important contents in quantum optics.It has been widely applied in the field of quantum computing and quantum state manipulation.When the electroma...The decay dynamic of an excited quantum emitter(QE)is one of the most important contents in quantum optics.It has been widely applied in the field of quantum computing and quantum state manipulation.When the electromagnetic environment is described by several pseudomodes,the effective Hamiltonian method based on the multi-mode Jaynes-Cummings model provides a clear physical picture and a simple and convenient way to solve the decay dynamics.However,in previous studies,only the resonant modes are taken into account,while the non-resonant contributions are ignored.In this work,we study the applicability and accuracy of the effective Hamiltonian method for the decay dynamics.We consider different coupling strengths between a two-level QE and a gold nanosphere.The results for dynamics by the resolvent operator technique are used as a reference.Numerical results show that the effective Hamiltonian method provides accurate results when the two-level QE is resonant with the plasmon.However,when the detuning is large,the effective Hamiltonian method is not accurate.In addition,the effective Hamiltonian method cannot be applied when there is a bound state between the QE and the plasmon.These results are of great significance to the study of the decay dynamics in micro-nano structures described by quasi-normal modes.展开更多
Using the pseudomode method, we theoretically analyze the creation of quantum correlations between two two-level dipole-dipole interacting atoms coupled with a common structured reservoir with different coupling stren...Using the pseudomode method, we theoretically analyze the creation of quantum correlations between two two-level dipole-dipole interacting atoms coupled with a common structured reservoir with different coupling strengths. Considering certain classes of initial separable-mixed states, we demonstrate that the sudden birth of atomic entanglement as well as the generation of stationary quantum correlations occur. Our results also suggest a possible way to control the occurrence time of entanglement sudden birth and the stationary value of quantum correlations by modifying the initial conditions of states, the dipole-dipole interaction, and the relative coupling strength. These results are helpful for the experimental engineering of entanglement and quantum correlations.展开更多
We investigate the roles of different qubit-environment decoherence models on the entanglement trapping of two qubits. By considering three environmental models (the single photonic band gap model, the common photoni...We investigate the roles of different qubit-environment decoherence models on the entanglement trapping of two qubits. By considering three environmental models (the single photonic band gap model, the common photonic band gap model, and the two independent photonic band gaps model), we note that the final values of entanglement trapping are determined by these different models. We also give the conditions of obtaining the larger entanglement trapping by comparing two-qubit entanglement dynamics in different decoherence models. Moreover, the comparison of entanglement trapping between two Bell-like states in the same decoherence model are also carried out.展开更多
This work provides a theoretical investigation into the strong coupling between a single quantum emitter(QE)and the surface plasmons of sodium metals in two representative plasmonic systems,i.e.,the semi-infinite meta...This work provides a theoretical investigation into the strong coupling between a single quantum emitter(QE)and the surface plasmons of sodium metals in two representative plasmonic systems,i.e.,the semi-infinite metal-dielectric interface and the metal nanoparticles(NPs)of monomer/dimer configuration.In both configurations,sodium metals exhibit distinctly stronger coupling strength and lower optical loss in the optical region than their noble metal counterparts,demonstrating the ideal candidate characteristics for single-molecule-level strong couplings with distinctly facile operation conditions.Our results provide new insights into extreme light-matter interactions with potential applications in quantum information,optical sensors,quantum chemistry,etc.展开更多
基金supported by Semnan University under Contract No. 21270。
文摘Following the recent paper(Teittinen et al 2019 New J. Phys. 21 123041), one can see that in general there is no simple relation between non-Markovianity and quantum speed limit. Here, we investigate the connection between quantum speed limit time and non-Markovianity of an atom in structured environments(reservoirs) whose dynamics is governed by an exact pseudomode master equation(Garraway 1997 Phys. Rev. A 55 2290). In particular, we find an inverse relation between them, which means that the non-Markovian feature of the quantum process leads to speedup of evolution. Thus, there is a link between quantum speedup and memory effects for specific cases of dynamical evolution. Our results might shed light on the relationship between the speedup of quantum evolution and the backflow of information from the environment to the system.
基金Project supported by the National Natural Science Foundation of China(11964010,11564013 and 11464014)the Natural Science Foundation of Hunan Province(2020JJ4495)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(22A0377 and 21A0333)the Jishou University Innovation Foundation for Postgraduate(Jdy20038)。
文摘The decay dynamic of an excited quantum emitter(QE)is one of the most important contents in quantum optics.It has been widely applied in the field of quantum computing and quantum state manipulation.When the electromagnetic environment is described by several pseudomodes,the effective Hamiltonian method based on the multi-mode Jaynes-Cummings model provides a clear physical picture and a simple and convenient way to solve the decay dynamics.However,in previous studies,only the resonant modes are taken into account,while the non-resonant contributions are ignored.In this work,we study the applicability and accuracy of the effective Hamiltonian method for the decay dynamics.We consider different coupling strengths between a two-level QE and a gold nanosphere.The results for dynamics by the resolvent operator technique are used as a reference.Numerical results show that the effective Hamiltonian method provides accurate results when the two-level QE is resonant with the plasmon.However,when the detuning is large,the effective Hamiltonian method is not accurate.In addition,the effective Hamiltonian method cannot be applied when there is a bound state between the QE and the plasmon.These results are of great significance to the study of the decay dynamics in micro-nano structures described by quasi-normal modes.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and 10947006)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20093705110001)+1 种基金the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ024)the Research Funds from Qufu Normal University, China (Grant Nos. XJ201013, XJ201219, and BSQD20110132)
文摘Using the pseudomode method, we theoretically analyze the creation of quantum correlations between two two-level dipole-dipole interacting atoms coupled with a common structured reservoir with different coupling strengths. Considering certain classes of initial separable-mixed states, we demonstrate that the sudden birth of atomic entanglement as well as the generation of stationary quantum correlations occur. Our results also suggest a possible way to control the occurrence time of entanglement sudden birth and the stationary value of quantum correlations by modifying the initial conditions of states, the dipole-dipole interaction, and the relative coupling strength. These results are helpful for the experimental engineering of entanglement and quantum correlations.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and 11247240)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123705120002)+3 种基金the Open Project of State Key Laboratory of Crystal Material in Shandong University, China (Grant No. KF1103)the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ024)the Youth Funds from Qufu Normal University, China (Grant No. XJ201219)the Scientific Research Foundation for Doctors of Qufu Normal University, China (Grant No. BSQD20110132)
文摘We investigate the roles of different qubit-environment decoherence models on the entanglement trapping of two qubits. By considering three environmental models (the single photonic band gap model, the common photonic band gap model, and the two independent photonic band gaps model), we note that the final values of entanglement trapping are determined by these different models. We also give the conditions of obtaining the larger entanglement trapping by comparing two-qubit entanglement dynamics in different decoherence models. Moreover, the comparison of entanglement trapping between two Bell-like states in the same decoherence model are also carried out.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1400700)the National Natural Science Foundation of China(Grant Nos.12075205,62375123,and 12022403)。
文摘This work provides a theoretical investigation into the strong coupling between a single quantum emitter(QE)and the surface plasmons of sodium metals in two representative plasmonic systems,i.e.,the semi-infinite metal-dielectric interface and the metal nanoparticles(NPs)of monomer/dimer configuration.In both configurations,sodium metals exhibit distinctly stronger coupling strength and lower optical loss in the optical region than their noble metal counterparts,demonstrating the ideal candidate characteristics for single-molecule-level strong couplings with distinctly facile operation conditions.Our results provide new insights into extreme light-matter interactions with potential applications in quantum information,optical sensors,quantum chemistry,etc.