In this study, the numerical solution for the Modified Equal Width Wave (MEW) equation is presented using Fourier spectral method that use to discretize the space variable and Leap-frog method scheme for time dependen...In this study, the numerical solution for the Modified Equal Width Wave (MEW) equation is presented using Fourier spectral method that use to discretize the space variable and Leap-frog method scheme for time dependence. Test problems including the single soliton wave motion, interaction of two solitary waves and interaction of three solitary waves will use to validate the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Finally, a Maxwellian initial condition pulse is then studied. The L<sub>2</sub> and L<sub>∞</sub> error norms are computed to study the accuracy and the simplicity of the presented method.展开更多
This paper deals with the numerical simulation of incompressible turbulent boundary flow of a flat plate with the pseudo-spectral matrix method. In order to appear more than 10 nodes in the turbulent base-stratum and ...This paper deals with the numerical simulation of incompressible turbulent boundary flow of a flat plate with the pseudo-spectral matrix method. In order to appear more than 10 nodes in the turbulent base-stratum and transition of 43×43 computational grids,a coordinate transformation is put up from physical panel to computational panel. Several zero turbulent models are computed comparatively. The results are credible when comparing with the previous methods.展开更多
Solar-powered aircraft have attracted great attention owing to their potential for longendurance flight and wide application prospects.Due to the particularity of energy system,flight strategy optimization is a signif...Solar-powered aircraft have attracted great attention owing to their potential for longendurance flight and wide application prospects.Due to the particularity of energy system,flight strategy optimization is a significant way to enhance the flight performance for solar-powered aircraft.In this study,a flight strategy optimization model for high-altitude long-endurance solar-powered aircraft was proposed.This model consists of three-dimensional kinematic model,aerodynamic model,energy collection model,energy store model and energy loss model.To solve the nonlinear optimal control problem with process constraints and terminal constraints,Gauss pseudo-spectral method was employed to discretize the state equations and constraint equations.Then a typical mission flying from given initial point to given final point within a time interval was considered.Results indicate that proper changes of the attitude angle contribute to increasing the energy gained by photovoltaic cells.Utilization of gravitational potential energy can partly take the role of battery pack.Integrating these two measures,the optimized flight strategy can improve the final state of charge compared with current constant-altitude constant-velocity strategy.The optimized strategy brings more profits on condition of lower sunlight intensity and shorter daytime.展开更多
Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. ...Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. In this paper, an efficient numerical method for solving the fractional Advection-dispersion equation (ADE) is considered. The fractional derivative is described in the Caputo sense. The method is based on Chebyshev approximations. The properties of Chebyshev polynomials are used to reduce ADE to a system of ordinary differential equations, which are solved using the finite difference method (FDM). Moreover, the convergence analysis and an upper bound of the error for the derived formula are given. Numerical solutions of ADE are presented and the results are compared with the exact solution.展开更多
With more applications of seismic exploration in metal ore exploration,forward modelling of seismic wave has become more important in metal ore. Finite difference method and pseudo-spectral method are two important me...With more applications of seismic exploration in metal ore exploration,forward modelling of seismic wave has become more important in metal ore. Finite difference method and pseudo-spectral method are two important methods of wave-field simulation. Results of previous studies show that both methods have distinct advantages and disadvantages: Finite difference method has high precision but its dispersion is serious; pseudospectral method considers both computational efficiency and precision but has less precision than finite-difference. The authors consider the complex structural characteristics of the metal ore,furthermore add random media in order to simulate the complex effects produced by metal ore for wave field. First,the study introduced the theories of random media and two forward modelling methods. Second,it compared the simulation results of two methods on fault model. Then the authors established a complex metal ore model,added random media and compared computational efficiency and precision. As a result,it is found that finite difference method is better than pseudo-spectral method in precision and boundary treatment,but the computational efficiency of pseudospectral method is slightly higher than the finite difference method.展开更多
This paper presents a numerical scheme for space fractional diffusion equations (SFDEs) based on pseudo-spectral method. In this approach, using the Guass-Lobatto nodes, the unknown function is approximated by orthogo...This paper presents a numerical scheme for space fractional diffusion equations (SFDEs) based on pseudo-spectral method. In this approach, using the Guass-Lobatto nodes, the unknown function is approximated by orthogonal polynomials or interpolation polynomials. Then, by using pseudo-spectral method, the SFDE is reduced to a system of ordinary differential equations for time variable t. The high order Runge-Kutta scheme can be used to solve the system. So, a high order numerical scheme is derived. Numerical examples illustrate that the results obtained by this method agree well with the analytical solutions.展开更多
In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caput...In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caputo sense. The study is conducted through illustrative example to demonstrate the validity and applicability of the presented method. The results reveal that the proposed method is very effective and simple. Moreover, only a small number of shifted Legendre polynomials are needed to obtain a satisfactory result.展开更多
In this paper, an efficient numerical method is considered for solving the fractional wave equation (FWE). The fractional derivative is described in the Caputo sense. The method is based on Laguerre approximations. Th...In this paper, an efficient numerical method is considered for solving the fractional wave equation (FWE). The fractional derivative is described in the Caputo sense. The method is based on Laguerre approximations. The properties of Laguerre polynomials are utilized to reduce FWE to a system of ordinary differential equations, which is solved by the finite difference method. An approximate formula of the fractional derivative is given. Special attention is given to study the convergence analysis and estimate an error upper bound of the presented formula. Numerical solutions of FWE are given and the results are compared with the exact solution.展开更多
Abstract Recently,the numerical methods for long-time dynamics of PDEs with weak nonlinearity have received more and more attention.For the nonlinear Schrödinger equation(NLS)with wave operator(NLSW)and weak nonl...Abstract Recently,the numerical methods for long-time dynamics of PDEs with weak nonlinearity have received more and more attention.For the nonlinear Schrödinger equation(NLS)with wave operator(NLSW)and weak nonlinearity controlled by a small valueε∈(0,1],an exponential wave integrator Fourier pseudo-spectral(EWIFP)discretization has been developed(Guo et al.,2021)and proved to be uniformly accurate aboutεup to the time atΟ(1/ε^(2))However,the EWIFP method is not time symmetric and can not preserve the discrete energy.As we know,the time symmetry and energy-preservation are the important structural features of the true solution and we hope that this structure can be inherited along the numerical solution.In this work,we propose a time symmetric and energy-preserving exponential wave integrator Fourier pseudo-spectral(SEPEWIFP)method for the NLSW with periodic boundary conditions.Through rigorous error analysis,we establish uniform error bounds of the numerical solution atΟ(h^(mo)+ε^(2-βτ2))up to the time atΟ(1/ε^(β))forβ∈[0,2]where h andτare the mesh size and time step,respectively,and m0 depends on the regularity conditions.The tools for error analysis mainly include cut-off technique and the standard energy method.We also extend the results on error bounds,energy-preservation and time symmetry to the oscillatory NLSW with wavelength atΟ(1/ε^(2))in time which is equivalent to the NLSW with weak nonlinearity.Numerical experiments confirm that the theoretical results in this paper are correct.Our method is novel because that to the best of our knowledge there has not been any energy-preserving exponential wave integrator method for the NLSW.展开更多
In this paper,we propose a novel noncausal control framework to address the energy maximization problem of wave energy converters(WECs)subject to constraints.The energy maximization problem of WECs is a constrained op...In this paper,we propose a novel noncausal control framework to address the energy maximization problem of wave energy converters(WECs)subject to constraints.The energy maximization problem of WECs is a constrained optimal control problem.The proposed control framework converts this problem into a reference trajectory tracking problem through the Fourier pseudo-spectral method(FPSM)and utilizes the online tracking adaptive dynamic programming(OTADP)algorithm to realize real-time trajectory tracking for practical use in the ocean environment.Using the wave prediction technique,the optimal trajectory is generated online through a receding horizon(RH)implementation.A critic neural network(NN)is applied to approximate the optimal cost value function and calculate the error-tracking control by solving the associated Hamilton-Jacobi-Bellman(HJB)equation.The proposed WEC control framework improves computational efficiency and makes the online control feasible in practice.Simulation results show the effects of the receding horizon implementation of FPSM with different window lengths and window functions,while verifying the performances of tracking control and energy absorption of WECs in two different sea conditions.展开更多
This paper aims to build a new framework of convergence analysis of conservative Fourier pseudo-spectral method for the general nonlinear Schr¨odinger equation in two dimensions,which is not restricted that the n...This paper aims to build a new framework of convergence analysis of conservative Fourier pseudo-spectral method for the general nonlinear Schr¨odinger equation in two dimensions,which is not restricted that the nonlinear term is mere cubic.The new framework of convergence analysis consists of two steps.In the first step,by truncating the nonlinear term into a global Lipschitz function,an alternative numerical method is proposed and proved in a rigorous way to be convergent in the discrete L2 norm;followed in the second step,the maximum bound of the numerical solution of the alternative numerical method is obtained by using a lifting technique,as implies that the two numerical methods are the same one.Under our framework of convergence analysis,with neither any restriction on the grid ratio nor any requirement of the small initial value,we establish the error estimate of the proposed conservative Fourier pseudo-spectral method,while previous work requires the certain restriction for the focusing case.The error bound is proved to be of O(h^(r)+t^(2))with grid size h and time step t.In fact,the framework can be used to prove the unconditional convergence of many other Fourier pseudo-spectral methods for solving the nonlinear Schr¨odinger-type equations.Numerical results are conducted to indicate the accuracy and efficiency of the proposed method,and investigate the effect of the nonlinear term and initial data on the blow-up solution.展开更多
Aiming at the missile avoidance problem of the unmanned aerial vehicle(UAV)in complex obstacle environments,this work proposes a collision-avoidance method based on receding horizon optimization.The proposed method ge...Aiming at the missile avoidance problem of the unmanned aerial vehicle(UAV)in complex obstacle environments,this work proposes a collision-avoidance method based on receding horizon optimization.The proposed method generated a specific trajectory for the UAV to effectively induce the proportional navigation missile to successfully intercept the obstacle,thereby accomplishing the evasive maneuver.The evasive maneuver was divided into two distinct stages,namely the collision-inducing phase and the fast departure phase.The obstacle potential field-based target selection algorithm was employed to identify the most appropriate target obstacle,while the induced trajectory was determined through a combination of receding horizon optimization and the hp-adaptive pseudo-spectral method.Simulation experiments were carried out under three different types of obstacle environments and one multiobstacle environment,and the simulation results show that the method proposed in this paper greatly improves the success rate of UAV evasive maneuvers,proving the effectiveness of this method.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha...Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.展开更多
The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytica...The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.展开更多
Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial i...Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields.展开更多
文摘In this study, the numerical solution for the Modified Equal Width Wave (MEW) equation is presented using Fourier spectral method that use to discretize the space variable and Leap-frog method scheme for time dependence. Test problems including the single soliton wave motion, interaction of two solitary waves and interaction of three solitary waves will use to validate the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Finally, a Maxwellian initial condition pulse is then studied. The L<sub>2</sub> and L<sub>∞</sub> error norms are computed to study the accuracy and the simplicity of the presented method.
文摘This paper deals with the numerical simulation of incompressible turbulent boundary flow of a flat plate with the pseudo-spectral matrix method. In order to appear more than 10 nodes in the turbulent base-stratum and transition of 43×43 computational grids,a coordinate transformation is put up from physical panel to computational panel. Several zero turbulent models are computed comparatively. The results are credible when comparing with the previous methods.
文摘Solar-powered aircraft have attracted great attention owing to their potential for longendurance flight and wide application prospects.Due to the particularity of energy system,flight strategy optimization is a significant way to enhance the flight performance for solar-powered aircraft.In this study,a flight strategy optimization model for high-altitude long-endurance solar-powered aircraft was proposed.This model consists of three-dimensional kinematic model,aerodynamic model,energy collection model,energy store model and energy loss model.To solve the nonlinear optimal control problem with process constraints and terminal constraints,Gauss pseudo-spectral method was employed to discretize the state equations and constraint equations.Then a typical mission flying from given initial point to given final point within a time interval was considered.Results indicate that proper changes of the attitude angle contribute to increasing the energy gained by photovoltaic cells.Utilization of gravitational potential energy can partly take the role of battery pack.Integrating these two measures,the optimized flight strategy can improve the final state of charge compared with current constant-altitude constant-velocity strategy.The optimized strategy brings more profits on condition of lower sunlight intensity and shorter daytime.
文摘Fractional differential equations have recently been applied in various areas of engineering, science, finance, applied mathematics, bio-engineering and others. However, many researchers remain unaware of this field. In this paper, an efficient numerical method for solving the fractional Advection-dispersion equation (ADE) is considered. The fractional derivative is described in the Caputo sense. The method is based on Chebyshev approximations. The properties of Chebyshev polynomials are used to reduce ADE to a system of ordinary differential equations, which are solved using the finite difference method (FDM). Moreover, the convergence analysis and an upper bound of the error for the derived formula are given. Numerical solutions of ADE are presented and the results are compared with the exact solution.
基金Supported by the National"863"Project(No.2014AA06A605)
文摘With more applications of seismic exploration in metal ore exploration,forward modelling of seismic wave has become more important in metal ore. Finite difference method and pseudo-spectral method are two important methods of wave-field simulation. Results of previous studies show that both methods have distinct advantages and disadvantages: Finite difference method has high precision but its dispersion is serious; pseudospectral method considers both computational efficiency and precision but has less precision than finite-difference. The authors consider the complex structural characteristics of the metal ore,furthermore add random media in order to simulate the complex effects produced by metal ore for wave field. First,the study introduced the theories of random media and two forward modelling methods. Second,it compared the simulation results of two methods on fault model. Then the authors established a complex metal ore model,added random media and compared computational efficiency and precision. As a result,it is found that finite difference method is better than pseudo-spectral method in precision and boundary treatment,but the computational efficiency of pseudospectral method is slightly higher than the finite difference method.
文摘This paper presents a numerical scheme for space fractional diffusion equations (SFDEs) based on pseudo-spectral method. In this approach, using the Guass-Lobatto nodes, the unknown function is approximated by orthogonal polynomials or interpolation polynomials. Then, by using pseudo-spectral method, the SFDE is reduced to a system of ordinary differential equations for time variable t. The high order Runge-Kutta scheme can be used to solve the system. So, a high order numerical scheme is derived. Numerical examples illustrate that the results obtained by this method agree well with the analytical solutions.
文摘In this paper, we apply the Legendre spectral-collocation method to obtain approximate solutions of nonlinear multi-order fractional differential equations (M-FDEs). The fractional derivative is described in the Caputo sense. The study is conducted through illustrative example to demonstrate the validity and applicability of the presented method. The results reveal that the proposed method is very effective and simple. Moreover, only a small number of shifted Legendre polynomials are needed to obtain a satisfactory result.
文摘In this paper, an efficient numerical method is considered for solving the fractional wave equation (FWE). The fractional derivative is described in the Caputo sense. The method is based on Laguerre approximations. The properties of Laguerre polynomials are utilized to reduce FWE to a system of ordinary differential equations, which is solved by the finite difference method. An approximate formula of the fractional derivative is given. Special attention is given to study the convergence analysis and estimate an error upper bound of the presented formula. Numerical solutions of FWE are given and the results are compared with the exact solution.
基金supported in part by the Natural Science Foundation of Hebei Province(Grant No.A2021205036).
文摘Abstract Recently,the numerical methods for long-time dynamics of PDEs with weak nonlinearity have received more and more attention.For the nonlinear Schrödinger equation(NLS)with wave operator(NLSW)and weak nonlinearity controlled by a small valueε∈(0,1],an exponential wave integrator Fourier pseudo-spectral(EWIFP)discretization has been developed(Guo et al.,2021)and proved to be uniformly accurate aboutεup to the time atΟ(1/ε^(2))However,the EWIFP method is not time symmetric and can not preserve the discrete energy.As we know,the time symmetry and energy-preservation are the important structural features of the true solution and we hope that this structure can be inherited along the numerical solution.In this work,we propose a time symmetric and energy-preserving exponential wave integrator Fourier pseudo-spectral(SEPEWIFP)method for the NLSW with periodic boundary conditions.Through rigorous error analysis,we establish uniform error bounds of the numerical solution atΟ(h^(mo)+ε^(2-βτ2))up to the time atΟ(1/ε^(β))forβ∈[0,2]where h andτare the mesh size and time step,respectively,and m0 depends on the regularity conditions.The tools for error analysis mainly include cut-off technique and the standard energy method.We also extend the results on error bounds,energy-preservation and time symmetry to the oscillatory NLSW with wavelength atΟ(1/ε^(2))in time which is equivalent to the NLSW with weak nonlinearity.Numerical experiments confirm that the theoretical results in this paper are correct.Our method is novel because that to the best of our knowledge there has not been any energy-preserving exponential wave integrator method for the NLSW.
基金supported by the Key R&D Program of Shandong Province,China(No.2021ZLGX04)the Taishan Industrial Experts Programme(No.tsls20231203)。
文摘In this paper,we propose a novel noncausal control framework to address the energy maximization problem of wave energy converters(WECs)subject to constraints.The energy maximization problem of WECs is a constrained optimal control problem.The proposed control framework converts this problem into a reference trajectory tracking problem through the Fourier pseudo-spectral method(FPSM)and utilizes the online tracking adaptive dynamic programming(OTADP)algorithm to realize real-time trajectory tracking for practical use in the ocean environment.Using the wave prediction technique,the optimal trajectory is generated online through a receding horizon(RH)implementation.A critic neural network(NN)is applied to approximate the optimal cost value function and calculate the error-tracking control by solving the associated Hamilton-Jacobi-Bellman(HJB)equation.The proposed WEC control framework improves computational efficiency and makes the online control feasible in practice.Simulation results show the effects of the receding horizon implementation of FPSM with different window lengths and window functions,while verifying the performances of tracking control and energy absorption of WECs in two different sea conditions.
基金Jialing Wang’s work is supported by the National Natural Science Foundation of China(Grant No.11801277)Tingchun Wang’s work is supported by the National Natural Science Foundation of China(Grant No.11571181)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20171454)Qing Lan Project.Yushun Wang’s work is supported by the National Natural Science Foundation of China(Grant Nos.11771213 and 12171245).
文摘This paper aims to build a new framework of convergence analysis of conservative Fourier pseudo-spectral method for the general nonlinear Schr¨odinger equation in two dimensions,which is not restricted that the nonlinear term is mere cubic.The new framework of convergence analysis consists of two steps.In the first step,by truncating the nonlinear term into a global Lipschitz function,an alternative numerical method is proposed and proved in a rigorous way to be convergent in the discrete L2 norm;followed in the second step,the maximum bound of the numerical solution of the alternative numerical method is obtained by using a lifting technique,as implies that the two numerical methods are the same one.Under our framework of convergence analysis,with neither any restriction on the grid ratio nor any requirement of the small initial value,we establish the error estimate of the proposed conservative Fourier pseudo-spectral method,while previous work requires the certain restriction for the focusing case.The error bound is proved to be of O(h^(r)+t^(2))with grid size h and time step t.In fact,the framework can be used to prove the unconditional convergence of many other Fourier pseudo-spectral methods for solving the nonlinear Schr¨odinger-type equations.Numerical results are conducted to indicate the accuracy and efficiency of the proposed method,and investigate the effect of the nonlinear term and initial data on the blow-up solution.
基金Natural Science Foundation of Heilongjiang Province of China(Grant No.YQ2022F012)the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2023010)to provide fund for conducting experiments.
文摘Aiming at the missile avoidance problem of the unmanned aerial vehicle(UAV)in complex obstacle environments,this work proposes a collision-avoidance method based on receding horizon optimization.The proposed method generated a specific trajectory for the UAV to effectively induce the proportional navigation missile to successfully intercept the obstacle,thereby accomplishing the evasive maneuver.The evasive maneuver was divided into two distinct stages,namely the collision-inducing phase and the fast departure phase.The obstacle potential field-based target selection algorithm was employed to identify the most appropriate target obstacle,while the induced trajectory was determined through a combination of receding horizon optimization and the hp-adaptive pseudo-spectral method.Simulation experiments were carried out under three different types of obstacle environments and one multiobstacle environment,and the simulation results show that the method proposed in this paper greatly improves the success rate of UAV evasive maneuvers,proving the effectiveness of this method.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金funded by the National Key R&D Program of China(Grant No.2022YFC2903904)the National Natural Science Foundation of China(Grant Nos.51904057 and U1906208).
文摘Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries.
基金supported by the National Natural Science Foundation of China(12172023).
文摘The separation-of-variable(SOV)methods,such as the improved SOV method,the variational SOV method,and the extended SOV method,have been proposed by the present authors and coworkers to obtain the closed-form analytical solutions for free vibration and eigenbuckling of rectangular plates and circular cylindrical shells.By taking the free vibration of rectangular thin plates as an example,this work presents the theoretical framework of the SOV methods in an instructive way,and the bisection–based solution procedures for a group of nonlinear eigenvalue equations.Besides,the explicit equations of nodal lines of the SOV methods are presented,and the relations of nodal line patterns and frequency orders are investigated.It is concluded that the highly accurate SOV methods have the same accuracy for all frequencies,the mode shapes about repeated frequencies can also be precisely captured,and the SOV methods do not have the problem of missing roots as well.
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
文摘Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields.