Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct ap...Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct approach to algorithm design, which involves taming quantum mechanical phenomena. This paper extends the numbering of computable programs to be applied in the quantum computing context. Numbering computable programs is a theoretical computer science concept that assigns unique numbers to individual programs or algorithms. Common methods include Gödel numbering which encodes programs as strings of symbols or characters, often used in formal systems and mathematical logic. Based on the proposed numbering approach, this paper presents a mechanism to explore the set of possible quantum algorithms. The proposed approach is able to construct useful circuits such as Quantum Key Distribution BB84 protocol, which enables sender and receiver to establish a secure cryptographic key via a quantum channel. The proposed approach facilitates the process of exploring and constructing quantum algorithms.展开更多
The effects of stage numbers on power dissipation of pipeline analog-to-digital converter (ADC) are studied and a novel design method aiming for power optimization is presented. In this method, a minimum comparator ...The effects of stage numbers on power dissipation of pipeline analog-to-digital converter (ADC) are studied and a novel design method aiming for power optimization is presented. In this method, a minimum comparator number algorithm (MCNA) is first introduced, and then the optimum distribution of resolutions through pipeline ADC stages is deduced by MCNA. Based on the optimum stage-resolution distribution, an optimization method is established, which examines the precise function between ADC power and stage resolutions with a parameter of power ratio (Rp). For 10-bit pipeline ADC with scaling down technology, the simulation results by using MATLAB CAD tools show that an eight-stage topology with 1-bit RSD correction achieves the power optimization indicated by the power reduction ratio.展开更多
Based on the data of daily precipitation in Lianyungang area from 1951 to 2012 and various climate signal data from the National Climate Center website and the NOAA website,a model for predicting whether the number of...Based on the data of daily precipitation in Lianyungang area from 1951 to 2012 and various climate signal data from the National Climate Center website and the NOAA website,a model for predicting whether the number of rainstorm days in summer in Lianyungang area is large was established by the classical C5. 0 decision tree algorithm. The data samples in 48 years( accounting for about 80% of total number of samples)was as the training set of a model,and the training accuracy rate of the model was 95. 83%. The data samples in the remaining 14 years( accounting for about 20% of total number of samples) were used as the test set of the model to test the model,and the test accuracy of the model was 85. 71%. The results showed that the prediction model of number of rainstorm days in summer constructed by C5. 0 algorithm had high accuracy and was easy to explain. Moreover,it is convenient for meteorological staff to use directly. At the same time,this study provides a new idea for short-term climate prediction of number of rainstorm days in summer.展开更多
A pseudo-random coding side-lobe suppression method based on CLEAN algorithm is introduced.The CLEAN algorithm mainly processes pulse compression results of a pseudo-random coding,and estimates a target's distance by...A pseudo-random coding side-lobe suppression method based on CLEAN algorithm is introduced.The CLEAN algorithm mainly processes pulse compression results of a pseudo-random coding,and estimates a target's distance by a method named interpolation method,so that we can get an ideal pulse compression result of the target,and then use the adjusted ideal pulse compression side-lobe to cut the actual pulse compression result,so as to achieve the remarkable performance of side-lobe suppression for large targets,and let the adjacent small targets appear.The computer simulations by MATLAB with this method analyze the effect of side-lobe suppression in an ideal or noisy environment.It is proved that this method can effectively solve the problem due to the side-lobe of pseudo-random coding being too high,and can enhance the radar's multi-target detection ability.展开更多
In the quantum Monte Carlo(QMC)method,the pseudo-random number generator(PRNG)plays a crucial role in determining the computation time.However,the hidden structure of the PRNG may lead to serious issues such as the br...In the quantum Monte Carlo(QMC)method,the pseudo-random number generator(PRNG)plays a crucial role in determining the computation time.However,the hidden structure of the PRNG may lead to serious issues such as the breakdown of the Markov process.Here,we systematically analyze the performance of different PRNGs on the widely used QMC method known as the stochastic series expansion(SSE)algorithm.To quantitatively compare them,we introduce a quantity called QMC efficiency that can effectively reflect the efficiency of the algorithms.After testing several representative observables of the Heisenberg model in one and two dimensions,we recommend the linear congruential generator as the best choice of PRNG.Our work not only helps improve the performance of the SSE method but also sheds light on the other Markov-chain-based numerical algorithms.展开更多
Random numbers generated by pseudo-random and true random number generators (TRNG) are used in a wide variety of important applications. A TRNG relies on a non-deterministic source to sample random numbers. In this pa...Random numbers generated by pseudo-random and true random number generators (TRNG) are used in a wide variety of important applications. A TRNG relies on a non-deterministic source to sample random numbers. In this paper, we improve the post-processing stage of TRNGs using a heuristic evolutionary algorithm. Our post-processing algorithm decomposes the problem of improving the quality of random numbers into two phases: (i) Exact Histogram Equalization: it modifies the random numbers distribution with a specified output distribution;(ii) Stationarity Enforcement: using genetic algorithms, the output of (ii) is permuted until the random numbers meet wide-sense stationarity. We ensure that the quality of the numbers generated from the genetic algorithm is within a specified level of error defined by the user. We parallelize the genetic algorithm for improved performance. The post-processing is based on the power spectral density of the generated numbers used as a metric. We propose guideline parameters for the evolutionary algorithm to ensure fast convergence, within the first 100 generations, with a standard deviation over the specified quality level of less than 0.45. We also include a TestU01 evaluation over the random numbers generated.展开更多
Static Random Access Memory(SRAM) based Field Programmable Gate Array(FPGA) is widely applied in the field of aerospace, whose anti-SEU(Single Event Upset) capability becomes more and more important. To improve anti-F...Static Random Access Memory(SRAM) based Field Programmable Gate Array(FPGA) is widely applied in the field of aerospace, whose anti-SEU(Single Event Upset) capability becomes more and more important. To improve anti-FPGA SEU capability, the registers of the circuit netlist are tripled and divided into three categories in this study. By the packing algorithm, the registers of triple modular redundancy are loaded into different configurable logic block. At the same time, the packing algorithm considers the effect of large fan-out nets. The experimental results show that the algorithm successfully realize the packing of the register of Triple Modular Redundancy(TMR). Comparing with Timing Versatile PACKing(TVPACK), the algorithm in this study is able to obtain a 11% reduction of the number of the nets in critical path, and a 12% reduction of the time delay in critical path on average when TMR is not considered. Especially, some critical path delay of circuit can be improved about 33%.展开更多
We apply the recent important result of serial sorting of n real numbers in time to the design of a parallel algorithm for sorting real numbers in time and operations. This is the first NC algorithm known to take oper...We apply the recent important result of serial sorting of n real numbers in time to the design of a parallel algorithm for sorting real numbers in time and operations. This is the first NC algorithm known to take operations for sorting real numbers.展开更多
Transmission of data over the internet has become a critical issue as a result of the advancement in technology, since it is possible for pirates to steal the intellectual property of content owners. This paper presen...Transmission of data over the internet has become a critical issue as a result of the advancement in technology, since it is possible for pirates to steal the intellectual property of content owners. This paper presents a new digital watermarking scheme that combines some operators of the Genetic Algorithm (GA) and the Residue Number (RN) System (RNS) to perform encryption on an image, which is embedded into a cover image for the purposes of watermarking. Thus, an image watermarking scheme uses an encrypted image. The secret image is embedded in decomposed frames of the cover image achieved by applying a three-level Discrete Wavelet Transform (DWT). This is to ensure that the secret information is not exposed even when there is a successful attack on the cover information. Content creators can prove ownership of the multimedia content by unveiling the secret information in a court of law. The proposed scheme was tested with sample data using MATLAB2022 and the results of the simulation show a great deal of imperceptibility and robustness as compared to similar existing schemes.展开更多
By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perect gas flows is derived. In view of numerical calculations, this model is proved...By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perect gas flows is derived. In view of numerical calculations, this model is proved very efficient, for it is kept within thep-v frame but does not have to satisfy the time consuming divergence-free condition in order to get the incompressible Navier-Stokes equation solution. Writing the equations in the form of conservation laws, we have derived the characteristic systems which are necessary for numerical calculations. A cell-centered finite-volume method with flux difference upwind-biased schemes is used for the equation solutions and a new Exact Newton Relaxation (ENR) implicit method is developed. Various computed results are presented to validate the present model. Laminar flow solutions over a circular cylinder with wake developing and vortex shedding are presented. Results for inviscid flow over a sphere are compared in excellent agreement with the exact analytic incompressible solution. Three-dimensional viscous flow solutions over sphere and prolate spheroid are also calculated and compared well with experiments and other incompressible solutions. Finally, good convergent performances are shown for sphere viscous flows.展开更多
The generation of good pseudo-random numbers is the base of many important fields in scientific computing, such as randomized algorithms and numerical solution of stochastic differential equations. In this paper, a cl...The generation of good pseudo-random numbers is the base of many important fields in scientific computing, such as randomized algorithms and numerical solution of stochastic differential equations. In this paper, a class of random number generators (RNGs) based on Weyl sequence is proposed. The uniformity of those RNGs is proved theoretically. Statistical and numerical computations show the efficiency of the methods.展开更多
In this paper, the diversity information included by dominating number is analyzed, and the probabilistic relationship between dominating number and diversity in the space of objective function is proved. A ranking me...In this paper, the diversity information included by dominating number is analyzed, and the probabilistic relationship between dominating number and diversity in the space of objective function is proved. A ranking method based on dominating number is proposed to build the Pareto front. Without increasing basic Pareto method’s computation complexity and introducing new parameters, a new multiobjective genetic algorithm based on proposed ranking method (MOGA-DN) is presented. Simulation results on function optimization and parameters optimization of control system verify the efficiency of MOGA-DN.展开更多
In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinea...In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.展开更多
Surface wave methods have received much attention due to their efficient, flexible and convenient characteristics. However, there are still critical issues regarding a key step in surface wave inversion. In most exist...Surface wave methods have received much attention due to their efficient, flexible and convenient characteristics. However, there are still critical issues regarding a key step in surface wave inversion. In most existing methods, the number of layers is assumed to be known prior to the process of inversion. However, improper assignment of this parameter leads to erroneous inversion results. A Bayesian nonparametric method for Rayleigh wave inversion is proposed herein to address this problem. In this method, each model class represents a particular number of layers with unknown S-wave velocity and thickness of each layer. As a result, determination of the number of layers is equivalent to selection of the most applicable model class. Regarding each model class, the optimization search of S-wave velocity and thickness of each layer is implemented by using a genetic algorithm. Then, each model class is assessed in view of its efficiency under the Bayesian framework and the most efficient class is selected. Simulated and actual examples verify that the proposed Bayesian nonparametric approach is reliable and efficient for Rayleigh wave inversion, especially for its capability to determine the number of layers.展开更多
It is very difficult to estimate exact values of time and cost of an activity in project scheduling process because many uncertain factors, such as weather, productivity level, human factors etc. , dynamically affect ...It is very difficult to estimate exact values of time and cost of an activity in project scheduling process because many uncertain factors, such as weather, productivity level, human factors etc. , dynamically affect them during project implementation process. A GAs-based fully fuzzy optimal time-cost trade-off model is presented based on fuzzy sets and genetic algorithms (GAs). In tihs model all parameters and variables are characteristics by fuzzy numbers. And then GAs is adopted to search for the optimal solution to this model. The method solves the time-cost trade-off problems under an uncertain environment and is proved practicable through a giving example in ship building scheduling.展开更多
To the problem that it is hard to determine the clustering number and the abnormal points by using the clustering validity function, an effective clustering partition model based on the genetic algorithm is built in t...To the problem that it is hard to determine the clustering number and the abnormal points by using the clustering validity function, an effective clustering partition model based on the genetic algorithm is built in this paper. The solution to the problem is formed by the combination of the clustering partition and the encoding samples, and the fitness function is defined by the distances among and within clusters. The clustering number and the samples in each cluster are determined and the abnormal points are distinguished by implementing the triple random crossover operator and the mutation. Based on the known sample data, the results of the novel method and the clustering validity function are compared. Numerical experiments are given and the results show that the novel method is more effective.展开更多
The advent of quantum computers and algorithms challenges the semantic security of symmetric and asymmetric cryptosystems. Thus, the implementation of new cryptographic primitives is essential. They must follow the br...The advent of quantum computers and algorithms challenges the semantic security of symmetric and asymmetric cryptosystems. Thus, the implementation of new cryptographic primitives is essential. They must follow the breakthroughs and properties of quantum calculators which make vulnerable existing cryptosystems. In this paper, we propose a random number generation model based on evaluation of the thermal noise power of the volume elements of an electronic system with a volume of 58.83 cm<sup>3</sup>. We prove through the sampling of the temperature of each volume element that it is difficult for an attacker to carry out an exploit. In 12 seconds, we generate for 7 volume elements, a stream of randomly generated keys of 187 digits that will be transmitted from source to destination through the properties of quantum cryptography.展开更多
文摘Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct approach to algorithm design, which involves taming quantum mechanical phenomena. This paper extends the numbering of computable programs to be applied in the quantum computing context. Numbering computable programs is a theoretical computer science concept that assigns unique numbers to individual programs or algorithms. Common methods include Gödel numbering which encodes programs as strings of symbols or characters, often used in formal systems and mathematical logic. Based on the proposed numbering approach, this paper presents a mechanism to explore the set of possible quantum algorithms. The proposed approach is able to construct useful circuits such as Quantum Key Distribution BB84 protocol, which enables sender and receiver to establish a secure cryptographic key via a quantum channel. The proposed approach facilitates the process of exploring and constructing quantum algorithms.
基金Supported by the National Natural Science Foundation of China (No. 60072004)
文摘The effects of stage numbers on power dissipation of pipeline analog-to-digital converter (ADC) are studied and a novel design method aiming for power optimization is presented. In this method, a minimum comparator number algorithm (MCNA) is first introduced, and then the optimum distribution of resolutions through pipeline ADC stages is deduced by MCNA. Based on the optimum stage-resolution distribution, an optimization method is established, which examines the precise function between ADC power and stage resolutions with a parameter of power ratio (Rp). For 10-bit pipeline ADC with scaling down technology, the simulation results by using MATLAB CAD tools show that an eight-stage topology with 1-bit RSD correction achieves the power optimization indicated by the power reduction ratio.
基金Support by Meteorological Open Research Foundation for the Huaihe River Basin(HRM201602)Foundation for Young Scholars of Jiangsu Meteorological Bureau(Q201708,KQ201802)+2 种基金Science and Technology Innovation Team Foundation for Marine Meteorological Forecast Technology of Lianyungang Meteorological BureauKey Technology R&D Program Project of Lianyungang City(SH1634)Special Project for Forecasters of Jiangsu Meteorological Bureau(JSYBY201811,JSYBY201812,JSYBY201810)
文摘Based on the data of daily precipitation in Lianyungang area from 1951 to 2012 and various climate signal data from the National Climate Center website and the NOAA website,a model for predicting whether the number of rainstorm days in summer in Lianyungang area is large was established by the classical C5. 0 decision tree algorithm. The data samples in 48 years( accounting for about 80% of total number of samples)was as the training set of a model,and the training accuracy rate of the model was 95. 83%. The data samples in the remaining 14 years( accounting for about 20% of total number of samples) were used as the test set of the model to test the model,and the test accuracy of the model was 85. 71%. The results showed that the prediction model of number of rainstorm days in summer constructed by C5. 0 algorithm had high accuracy and was easy to explain. Moreover,it is convenient for meteorological staff to use directly. At the same time,this study provides a new idea for short-term climate prediction of number of rainstorm days in summer.
文摘A pseudo-random coding side-lobe suppression method based on CLEAN algorithm is introduced.The CLEAN algorithm mainly processes pulse compression results of a pseudo-random coding,and estimates a target's distance by a method named interpolation method,so that we can get an ideal pulse compression result of the target,and then use the adjusted ideal pulse compression side-lobe to cut the actual pulse compression result,so as to achieve the remarkable performance of side-lobe suppression for large targets,and let the adjacent small targets appear.The computer simulations by MATLAB with this method analyze the effect of side-lobe suppression in an ideal or noisy environment.It is proved that this method can effectively solve the problem due to the side-lobe of pseudo-random coding being too high,and can enhance the radar's multi-target detection ability.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274046,11874094,and 12147102)Chongqing Natural Science Foundation(Grant No.CSTB2022NSCQ-JQX0018)Fundamental Research Funds for the Central Universities(Grant No.2021CDJZYJH-003).
文摘In the quantum Monte Carlo(QMC)method,the pseudo-random number generator(PRNG)plays a crucial role in determining the computation time.However,the hidden structure of the PRNG may lead to serious issues such as the breakdown of the Markov process.Here,we systematically analyze the performance of different PRNGs on the widely used QMC method known as the stochastic series expansion(SSE)algorithm.To quantitatively compare them,we introduce a quantity called QMC efficiency that can effectively reflect the efficiency of the algorithms.After testing several representative observables of the Heisenberg model in one and two dimensions,we recommend the linear congruential generator as the best choice of PRNG.Our work not only helps improve the performance of the SSE method but also sheds light on the other Markov-chain-based numerical algorithms.
文摘Random numbers generated by pseudo-random and true random number generators (TRNG) are used in a wide variety of important applications. A TRNG relies on a non-deterministic source to sample random numbers. In this paper, we improve the post-processing stage of TRNGs using a heuristic evolutionary algorithm. Our post-processing algorithm decomposes the problem of improving the quality of random numbers into two phases: (i) Exact Histogram Equalization: it modifies the random numbers distribution with a specified output distribution;(ii) Stationarity Enforcement: using genetic algorithms, the output of (ii) is permuted until the random numbers meet wide-sense stationarity. We ensure that the quality of the numbers generated from the genetic algorithm is within a specified level of error defined by the user. We parallelize the genetic algorithm for improved performance. The post-processing is based on the power spectral density of the generated numbers used as a metric. We propose guideline parameters for the evolutionary algorithm to ensure fast convergence, within the first 100 generations, with a standard deviation over the specified quality level of less than 0.45. We also include a TestU01 evaluation over the random numbers generated.
基金Supported by the National Natural Science Foundation of China(No.61106033)
文摘Static Random Access Memory(SRAM) based Field Programmable Gate Array(FPGA) is widely applied in the field of aerospace, whose anti-SEU(Single Event Upset) capability becomes more and more important. To improve anti-FPGA SEU capability, the registers of the circuit netlist are tripled and divided into three categories in this study. By the packing algorithm, the registers of triple modular redundancy are loaded into different configurable logic block. At the same time, the packing algorithm considers the effect of large fan-out nets. The experimental results show that the algorithm successfully realize the packing of the register of Triple Modular Redundancy(TMR). Comparing with Timing Versatile PACKing(TVPACK), the algorithm in this study is able to obtain a 11% reduction of the number of the nets in critical path, and a 12% reduction of the time delay in critical path on average when TMR is not considered. Especially, some critical path delay of circuit can be improved about 33%.
文摘We apply the recent important result of serial sorting of n real numbers in time to the design of a parallel algorithm for sorting real numbers in time and operations. This is the first NC algorithm known to take operations for sorting real numbers.
文摘Transmission of data over the internet has become a critical issue as a result of the advancement in technology, since it is possible for pirates to steal the intellectual property of content owners. This paper presents a new digital watermarking scheme that combines some operators of the Genetic Algorithm (GA) and the Residue Number (RN) System (RNS) to perform encryption on an image, which is embedded into a cover image for the purposes of watermarking. Thus, an image watermarking scheme uses an encrypted image. The secret image is embedded in decomposed frames of the cover image achieved by applying a three-level Discrete Wavelet Transform (DWT). This is to ensure that the secret information is not exposed even when there is a successful attack on the cover information. Content creators can prove ownership of the multimedia content by unveiling the secret information in a court of law. The proposed scheme was tested with sample data using MATLAB2022 and the results of the simulation show a great deal of imperceptibility and robustness as compared to similar existing schemes.
基金The project supported by the Basic Research on Frontier Problems in Fluid and Aerodynamics in Chinathe National Natural Science Foundation of China (19772069)
文摘By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perect gas flows is derived. In view of numerical calculations, this model is proved very efficient, for it is kept within thep-v frame but does not have to satisfy the time consuming divergence-free condition in order to get the incompressible Navier-Stokes equation solution. Writing the equations in the form of conservation laws, we have derived the characteristic systems which are necessary for numerical calculations. A cell-centered finite-volume method with flux difference upwind-biased schemes is used for the equation solutions and a new Exact Newton Relaxation (ENR) implicit method is developed. Various computed results are presented to validate the present model. Laminar flow solutions over a circular cylinder with wake developing and vortex shedding are presented. Results for inviscid flow over a sphere are compared in excellent agreement with the exact analytic incompressible solution. Three-dimensional viscous flow solutions over sphere and prolate spheroid are also calculated and compared well with experiments and other incompressible solutions. Finally, good convergent performances are shown for sphere viscous flows.
基金Supported by National Natural Science Foundation of China (19871047)and National Key Basic Research Special Fund(1998020306).
文摘The generation of good pseudo-random numbers is the base of many important fields in scientific computing, such as randomized algorithms and numerical solution of stochastic differential equations. In this paper, a class of random number generators (RNGs) based on Weyl sequence is proposed. The uniformity of those RNGs is proved theoretically. Statistical and numerical computations show the efficiency of the methods.
基金supported by the Academic Outstanding Youth Talented Person Fund of Anhui Province (No.2009SQR2014)
文摘In this paper, the diversity information included by dominating number is analyzed, and the probabilistic relationship between dominating number and diversity in the space of objective function is proved. A ranking method based on dominating number is proposed to build the Pareto front. Without increasing basic Pareto method’s computation complexity and introducing new parameters, a new multiobjective genetic algorithm based on proposed ranking method (MOGA-DN) is presented. Simulation results on function optimization and parameters optimization of control system verify the efficiency of MOGA-DN.
基金supported by National Foundation of Natural Science under the Grant 11071216
文摘In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.
基金Science and Technology Development Fund of the Macao SAR under research grant SKL-IOTSC-2018-2020the Research Committee of University of Macao under Research Grant MYRG2016-00029-FST。
文摘Surface wave methods have received much attention due to their efficient, flexible and convenient characteristics. However, there are still critical issues regarding a key step in surface wave inversion. In most existing methods, the number of layers is assumed to be known prior to the process of inversion. However, improper assignment of this parameter leads to erroneous inversion results. A Bayesian nonparametric method for Rayleigh wave inversion is proposed herein to address this problem. In this method, each model class represents a particular number of layers with unknown S-wave velocity and thickness of each layer. As a result, determination of the number of layers is equivalent to selection of the most applicable model class. Regarding each model class, the optimization search of S-wave velocity and thickness of each layer is implemented by using a genetic algorithm. Then, each model class is assessed in view of its efficiency under the Bayesian framework and the most efficient class is selected. Simulated and actual examples verify that the proposed Bayesian nonparametric approach is reliable and efficient for Rayleigh wave inversion, especially for its capability to determine the number of layers.
基金Supported by the National High-Tech. R&D Program for CIMS (NO. 2003AA414060).
文摘It is very difficult to estimate exact values of time and cost of an activity in project scheduling process because many uncertain factors, such as weather, productivity level, human factors etc. , dynamically affect them during project implementation process. A GAs-based fully fuzzy optimal time-cost trade-off model is presented based on fuzzy sets and genetic algorithms (GAs). In tihs model all parameters and variables are characteristics by fuzzy numbers. And then GAs is adopted to search for the optimal solution to this model. The method solves the time-cost trade-off problems under an uncertain environment and is proved practicable through a giving example in ship building scheduling.
文摘To the problem that it is hard to determine the clustering number and the abnormal points by using the clustering validity function, an effective clustering partition model based on the genetic algorithm is built in this paper. The solution to the problem is formed by the combination of the clustering partition and the encoding samples, and the fitness function is defined by the distances among and within clusters. The clustering number and the samples in each cluster are determined and the abnormal points are distinguished by implementing the triple random crossover operator and the mutation. Based on the known sample data, the results of the novel method and the clustering validity function are compared. Numerical experiments are given and the results show that the novel method is more effective.
文摘The advent of quantum computers and algorithms challenges the semantic security of symmetric and asymmetric cryptosystems. Thus, the implementation of new cryptographic primitives is essential. They must follow the breakthroughs and properties of quantum calculators which make vulnerable existing cryptosystems. In this paper, we propose a random number generation model based on evaluation of the thermal noise power of the volume elements of an electronic system with a volume of 58.83 cm<sup>3</sup>. We prove through the sampling of the temperature of each volume element that it is difficult for an attacker to carry out an exploit. In 12 seconds, we generate for 7 volume elements, a stream of randomly generated keys of 187 digits that will be transmitted from source to destination through the properties of quantum cryptography.