目的激光雷达在自动驾驶中具有重要意义,但其价格昂贵,且产生的激光线束数量仍然较少,造成采集的点云密度较稀疏。为了更好地感知周围环境,本文提出一种激光雷达数据增强算法,由双目图像生成伪点云并对伪点云进行坐标修正,进而实现激光...目的激光雷达在自动驾驶中具有重要意义,但其价格昂贵,且产生的激光线束数量仍然较少,造成采集的点云密度较稀疏。为了更好地感知周围环境,本文提出一种激光雷达数据增强算法,由双目图像生成伪点云并对伪点云进行坐标修正,进而实现激光雷达点云的稠密化处理,提高3D目标检测精度。此算法不针对特定的3D目标检测网络结构,是一种通用的点云稠密化方法。方法首先利用双目RGB图像生成深度图像,根据先验的相机参数和深度信息计算出每个像素点在雷达坐标系下的粗略3维坐标,即伪点云。为了更好地分割地面,本文提出了循环RANSAC(random sample consensus)算法,引入了一个分离平面型非地面点云的暂存器,改进复杂场景下的地面分割效果。然后将原始点云进行地面分割后插入KDTree(k-dimensional tree),以伪点云中的每个点为中心在KDTree中搜索若干近邻点,基于这些近邻点进行曲面重建。根据曲面重建结果,设计一种计算几何方法导出伪点云修正后的精确坐标。最后,将修正后的伪点云与原始激光雷达点云融合得到稠密化点云。结果实验结果表明,稠密化的点云在视觉上具有较好的质量,物体具有更加完整的形状和轮廓,并且在KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute)数据集上提升了3D目标检测精度。在使用该数据增强方法后,KITTI数据集下AVOD(aggregate view object detection)检测方法的AP_(3D)-Easy(average precision of 3D object detection on easy setting)提升了8.25%,AVOD-FPN(aggregate view object detection with feature pyramid network)检测方法的AP_(BEV)-Hard(average precision of bird’s eye view on hard setting)提升了7.14%。结论本文提出的激光雷达数据增强算法,实现了点云的稠密化处理,并使3D目标检测结果更加精确。展开更多
目的针对激光雷达点云稀疏性导致小目标检测精度下降的问题,提出一种伪激光点云增强技术,利用图像与点云融合,对稀疏的小目标几何信息进行补充,提升道路场景下三维目标检测性能。方法首先,使用深度估计网络获取双目图像的深度图,利用激...目的针对激光雷达点云稀疏性导致小目标检测精度下降的问题,提出一种伪激光点云增强技术,利用图像与点云融合,对稀疏的小目标几何信息进行补充,提升道路场景下三维目标检测性能。方法首先,使用深度估计网络获取双目图像的深度图,利用激光点云对深度图进行深度校正,减少深度估计误差;其次,采用语义分割的方法获取图像的前景区域,仅将前景区域对应的深度图映射到三维空间中生成伪激光点云,提升伪激光点云中前景点的数量占比;最后,根据不同的观测距离对伪激光点云进行不同线数的下采样,并与原始激光点云进行融合作为最终的输入点云数据。结果在KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago)数据集上的实验结果表明,该方法能够提升多个最新网络框架的小目标检测精度,以典型网络SECOND(sparsely embedded convolutional detection)、MVX-Net(multimodal voxelnet for 3D object detection)、Voxel-RCNN为例,在困难等级下,三维目标检测精度分别获得8.65%、7.32%和6.29%的大幅提升。结论该方法适用于所有以点云为输入的目标检测网络,并显著提升了多个目标检测网络在道路场景下的小目标检测性能。该方法具备有效性与通用性。展开更多
文摘针对含有噪声和外点的三维点云刚体配准问题,由于迭代最近点(iterative closest point,ICP)算法的配准精度较低,为此,该文提出了一种基于改进ICP算法的三维点云刚体配准方法。考虑到伪Huber损失函数对噪声和外点不敏感、鲁棒性强,首先,建立了基于伪Huber损失函数的三维点云刚体配准模型。其次,利用RGB-D点云数据中颜色信息辅助建立点云对应关系,以提高改进ICP算法中对应点匹配的准确性。最后,结合奇异值分解(singular value decomposition,SVD)和Levenberg-Marquardt(LM)的优化算法对三维点云刚体配准模型进行优化求解。实验结果表明,该文所提三维点云刚体配准方法的配准精度高,能够有效抑制噪声和外点对配准精度的影响。
文摘目的激光雷达在自动驾驶中具有重要意义,但其价格昂贵,且产生的激光线束数量仍然较少,造成采集的点云密度较稀疏。为了更好地感知周围环境,本文提出一种激光雷达数据增强算法,由双目图像生成伪点云并对伪点云进行坐标修正,进而实现激光雷达点云的稠密化处理,提高3D目标检测精度。此算法不针对特定的3D目标检测网络结构,是一种通用的点云稠密化方法。方法首先利用双目RGB图像生成深度图像,根据先验的相机参数和深度信息计算出每个像素点在雷达坐标系下的粗略3维坐标,即伪点云。为了更好地分割地面,本文提出了循环RANSAC(random sample consensus)算法,引入了一个分离平面型非地面点云的暂存器,改进复杂场景下的地面分割效果。然后将原始点云进行地面分割后插入KDTree(k-dimensional tree),以伪点云中的每个点为中心在KDTree中搜索若干近邻点,基于这些近邻点进行曲面重建。根据曲面重建结果,设计一种计算几何方法导出伪点云修正后的精确坐标。最后,将修正后的伪点云与原始激光雷达点云融合得到稠密化点云。结果实验结果表明,稠密化的点云在视觉上具有较好的质量,物体具有更加完整的形状和轮廓,并且在KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute)数据集上提升了3D目标检测精度。在使用该数据增强方法后,KITTI数据集下AVOD(aggregate view object detection)检测方法的AP_(3D)-Easy(average precision of 3D object detection on easy setting)提升了8.25%,AVOD-FPN(aggregate view object detection with feature pyramid network)检测方法的AP_(BEV)-Hard(average precision of bird’s eye view on hard setting)提升了7.14%。结论本文提出的激光雷达数据增强算法,实现了点云的稠密化处理,并使3D目标检测结果更加精确。
文摘目的针对激光雷达点云稀疏性导致小目标检测精度下降的问题,提出一种伪激光点云增强技术,利用图像与点云融合,对稀疏的小目标几何信息进行补充,提升道路场景下三维目标检测性能。方法首先,使用深度估计网络获取双目图像的深度图,利用激光点云对深度图进行深度校正,减少深度估计误差;其次,采用语义分割的方法获取图像的前景区域,仅将前景区域对应的深度图映射到三维空间中生成伪激光点云,提升伪激光点云中前景点的数量占比;最后,根据不同的观测距离对伪激光点云进行不同线数的下采样,并与原始激光点云进行融合作为最终的输入点云数据。结果在KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago)数据集上的实验结果表明,该方法能够提升多个最新网络框架的小目标检测精度,以典型网络SECOND(sparsely embedded convolutional detection)、MVX-Net(multimodal voxelnet for 3D object detection)、Voxel-RCNN为例,在困难等级下,三维目标检测精度分别获得8.65%、7.32%和6.29%的大幅提升。结论该方法适用于所有以点云为输入的目标检测网络,并显著提升了多个目标检测网络在道路场景下的小目标检测性能。该方法具备有效性与通用性。