期刊文献+
共找到682篇文章
< 1 2 35 >
每页显示 20 50 100
Prussian blue and its analogues nanomaterials:A focused view on physicochemical properties and precise synthesis
1
作者 Yicheng Tan Duo Chen +3 位作者 Volodymyr Kotsiubynskyi Guangshe Li Laifa Shen Wei Han 《Journal of Energy Chemistry》 2025年第8期393-406,共14页
Prussian blue/Prussian blue analogues(PB/PBAs)are widely used in electrochemistry and materials science fields,such as electrochemical energy storage,catalysis,water purification,and electromagnetic wave absorption,ow... Prussian blue/Prussian blue analogues(PB/PBAs)are widely used in electrochemistry and materials science fields,such as electrochemical energy storage,catalysis,water purification,and electromagnetic wave absorption,owing to their 3D open-framework structure,tunable composition,and large specific surface area.However,the co-precipitation method,which is most suitable for large-scale production of PB/PBAs,often leads to the formation of numerous crystal defects and severe lattice distortion,which significantly affects the structural stability of PB/PBAs.To obtain high-crystallinity PB/PBAs with targeted properties,precise synthesis considering various detailed conditions is especially needed.Herein,this review comprehensively summarizes the fundamental structure composition,key factors in synthesis,and applications in the electrochemistry of PB/PBAs.Unlike previous reports,this review elucidates the relationship between the physicochemical properties of PB/PBAs and their structural composition,with a particular focus on revealing the mechanisms and significance of specific preparation methods during the synthesis process,including reactant concentration,chelating agent,aging,atmosphere,temperature,and drying conditions,for achieving the precise fabrication of PB/PBAs nanomaterials.As PB/PBAs gradually become materials for multidimensional applications,we urge greater attention to the unique properties of PB/PBAs that are sustained by high crystallinity and stable crystal structures.This will effectively ensure the maximization of their advantages in practical applications. 展开更多
关键词 prussian blue prussian blue analogue Inorganic synthesis Electrochemical energy storage NANOMATERIAL
在线阅读 下载PDF
Prussian Blue Analogue‑Templated Nanocomposites for Alkali‑Ion Batteries:Progress and Perspective
2
作者 Jian‑En Zhou Yilin Li +1 位作者 Xiaoming Lin Jiaye Ye 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期216-261,共46页
Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion... Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries(AIBs)including sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).Owing to larger ion sizes of Na^(+)and K^(+)compared with Li^(+),nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage.With enticing open rigid framework structures,Prussian blue analogues(PBAs)remain promising self-sacrificial templates for the preparation of various nanocomposites,whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition.This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication,lithium/sodium/potassium storage mechanism,and applications in AIBs(LIBs,SIBs,and PIBs).To distinguish various PBA derivatives,the working mechanism and applications of PBA-templated metal oxides,metal chalcogenides,metal phosphides,and other nanocomposites are systematically evaluated,facilitating the establishment of a structure–activity correlation for these materials.Based on the fruitful achievements of PBA-derived nanocomposites,perspectives for their future development are envisioned,aiming to narrow down the gap between laboratory study and industrial reality. 展开更多
关键词 prussian blue analogues Self-sacrificial template Lithium-ion batteries Sodium-ion batteries Potassium-ion batteries
在线阅读 下载PDF
Succinonitrile-driven cathode-electrolyte interface modulation for stable and high-rate Prussian white cathode in potassium-ion batteries
3
作者 Hao Ouyang Rui Li +4 位作者 Yongqing Cai Jilei Liu Heng Li Shen Lai Shi Chen 《Journal of Energy Chemistry》 2025年第10期280-287,共8页
Iron-based Prussian white(PW)materials have attracted considerable attention as promising cathodes for potassium-ion batteries(PIBs)due to their high capacity,easy preparation,and economic merits.However,the intrinsic... Iron-based Prussian white(PW)materials have attracted considerable attention as promising cathodes for potassium-ion batteries(PIBs)due to their high capacity,easy preparation,and economic merits.However,the intrinsic iron dissolution and uncontrollable cathode-electrolyte interface(CEI)formation in conventional organic electrolytes severely hinder their long-term cycling stability.Herein,we employ succinonitrile(SN),a bifunctional electrolyte additive,to suppress the iron dissolution and promote thin,uniform,and stable CEI formation of the PW cathode,thus improving its structural stability.Benefited from the coordination between the cyano groups in SN and iron atoms,this molecule can preferentially adsorb on the surface of PW to mitigate iron dissolution.SN also facilitates the decomposition of anions in potassium salt rather than organic solvents in electrolyte due to the attractive reaction between SN and anions.Consequently,the PW cathode with SN additive provides better electrochemical reversibility,showing capacity retention of 93.6%after 3000 cycles at 5C.In comparison,without SN,the capacity retention is only 87.4%after 1000 cycles under the same conditions.Moreover,the full cells of PW matched with commercial graphite(Gr)achieve stable cycling for 3500 cycles at a high rate of 20C,with an exceptional capacity decay of only 0.005%per cycle,surpassing the majority of recently reported results in literature. 展开更多
关键词 Potassium-ion batteries prussian white Cathode-electrolyte interface Electrolyte additive High-rate
在线阅读 下载PDF
Optimized synthesis and electrochemical behaviors of Prussian blue analogues cathodes for potassium-ion batteries
4
作者 Long Cheng Yuanyi Luo +7 位作者 Hao Wang Zhiyue Zhou Mengkai Yang Chen Li Yujie Zheng Meng Li Lei Wang Kuan Sun 《Materials Reports(Energy)》 2025年第2期32-47,I0001,共17页
ⅢThe superior adaptability of Prussian blue analogues(PBAs)in interacting with potassium ions has shifted research focus toward their potential application as cathodes of potassium-ion batteries(PIBs).The large inter... ⅢThe superior adaptability of Prussian blue analogues(PBAs)in interacting with potassium ions has shifted research focus toward their potential application as cathodes of potassium-ion batteries(PIBs).The large interstitial space formed between metal ions and–C≡N–in PBAs can accommodate large-radius K^(+).However,the rapid nucleation in the co-precipitation synthesis process of PBAs induces many lattice defects of[M(CN)_(6)]^(4-)vacancies(V_([M–C≡N])),interstitial and coordinated H_(2)O molecules,which will directly lead to performance degradation.Moreover,originating from various transition metal elements in low/high-spin electron configuration states,PBAs exhibit diverse electrochemical behaviors,such as low reaction kinetics of low-spin iron(Ⅱ),Jahn-Teller distortion and dissolution of manganese(Ⅲ),and electrochemical inertness of nickel(Ⅱ)and copper(Ⅱ).Here,we summarize recently reported structures and properties of PBAs,classifying them based on the types of transition metals(iron,cobalt,manganese,copper,nickel)employed.Advanced synthesis strategies,including control engineering of crystallinity based on H_(2)O molecules and V_([M–C≡N]),were discussed.Also,the approaches for enhancing the electrochemical performance of PBAs were highlighted.Finally,the challenges and prospects towards the future development of PBAs are put forward.The review is expected to provide technical and theoretical support for the design of high-performance PBAs. 展开更多
关键词 prussian blue analogues Potassium-ion batteries Cathodes SYNTHESIS Electrochemical behaviors
在线阅读 下载PDF
Selective and effective removal of cesium ions using Prussian blue analog@γ-alumina core-shell pellets
5
作者 Jiajia Song Ying Liu +7 位作者 Baojian Liu Yifeng Cao Jinxiong Lin Fuxing Shen Qiwei Yang Zhiguo Zhang Qilong Ren Zongbi Bao 《Chinese Journal of Chemical Engineering》 2025年第1期30-41,共12页
The removal of cesium-137(^(137)Cs)from nuclear wastewater remains crucial due to its radioactivity and high solubility in water,which pose serious risk to human health and the environment.Aiming at selective capture ... The removal of cesium-137(^(137)Cs)from nuclear wastewater remains crucial due to its radioactivity and high solubility in water,which pose serious risk to human health and the environment.Aiming at selective capture of Cs^(+) from wastewater,a core-shell adsorbent,Prussian blue analog@y-alumina(PBA@Al_(2)O_(3))pellets were synthesized using the hydrothermal-stepwise deposition method.The coreshell PBA@Al_(2)O_(3)pellets showcased a PBA loading of 25%and demonstrated a maximum adsorption capacity of 15.65 mg·g^(-1).The adsorption data was consistent with the pseudo-second-order kinetic model and the Langmuir isotherm model.It effectively reduced bulk Cs^(+) concentrations from an initial 6.62 mg·L^(-1)to 2 μg·L^(-1),achieving a removal efficiency of 99.97%and distribution coefficient(Kd)of 1.265×10^(6)ml·g^(-1),surpassing the performance of other PBA-based materials.The material also indicated good mechanical properties and cesium ion removal rates of 99.7%across a wide pH range(1.82 to 11.12).Furthermore,PBA@Al_(2)O_(3)exhibited consistent removal rate of over 99%and good selectivity(SF=50-1600)towards Cs^(+) even in the presence of interfering ions such as Na^(+),K^(+),Mg^(2+),and Ca^(2+)ions.The Kd(Cs^(+))for PBA@Al2O3 in simulated seawater and groundwater were 9.92×10^(3)and 2.23×10^(4)ml·g^(-1),where the removal rates reached 96.1%and 98.2%,respectively.XPS confirms that the adsorption mechanism is the ion exchange between Cs^(+) and K^(+)ions.This study underscores the significant potential of inorganic core-shell pellets adsorbents as promising agents for the selective capture of Cs^(+) from wastewater. 展开更多
关键词 ADSORPTION Cesium removal prussian blue analog Nuclear wastewater CORE-SHELL
在线阅读 下载PDF
Manipulating Heterogeneous Surface/Interface Reconstruction of Nickel Molybdate Nanofiber by In Situ Prussian Blue Analogs Etching Strategy for Oxygen Evolution
6
作者 Xinyao Ding Lirong Zhang +2 位作者 Peng Yu Ruibai Cang Mingyi Zhang 《Energy & Environmental Materials》 2025年第3期199-207,共9页
Bimetallic oxides are promising electrocatalysts due to their rich composition,facile synthesis,and favorable stability under oxidizing conditions.This paper innovatively proposes a strategy aimed at constructing a on... Bimetallic oxides are promising electrocatalysts due to their rich composition,facile synthesis,and favorable stability under oxidizing conditions.This paper innovatively proposes a strategy aimed at constructing a one-dimensional heterostructure(Fe–NiO/NiMoO_(4) nanoparticles/nanofibers).The strategy commences with the meticulous treatment of NiMoO_(4) nanofibers,utilizing in situ etching techniques to induce the formation of Prussian Blue Analog compounds.In this process,[Fe(CN)_(6)]^(3-)anions react with the NiMoO_(4) host layer to form a steady NiFe PBA.Subsequently,the surface/interface reconstituted NiMoO_(4) nanofibers undergo direct oxidation,leading to a reconfiguration of the surface structure and the formation of a unique Fe–NiO/NiMoO_(4) one-dimensional heterostructure.The catalyst showed markedly enhanced electrocatalytic performance for the oxygen evolution reaction.Density functional theory results reveal that the incorporation of Fe as a dopant dramatically reduces the Gibbs free energy associated with the rate-determining step in the oxygen evolution reaction pathway.This pivotal transformation directly lowers the activation energy barrier,thereby significantly enhancing electron transfer efficiency. 展开更多
关键词 in situ etching NANOFIBER NiMoO_(4) OER prussian Blue Analog
在线阅读 下载PDF
Entropy Engineering Activates Cu-Fe Inertia Center From Prussian Blue Analogs With Micro-Strains for Oxygen Electrocatalysis in Zn-Air Batteries
7
作者 Han Man Guanyu Chen +5 位作者 Fengmei Wang Jiafeng Ruan Yihao Liu Yang Liu Fang Fang Renchao Che 《Carbon Energy》 2025年第5期126-135,共10页
By the random distribution of metals in a single phase,entropy engineering is applied to construct dense neighboring active centers with diverse electronic and geometric structures,realizing the continuous optimizatio... By the random distribution of metals in a single phase,entropy engineering is applied to construct dense neighboring active centers with diverse electronic and geometric structures,realizing the continuous optimization of multiple primary reactions for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).Many catalysts developed through entropy engineering have been built in nearly equimolar ratios to pursue high entropy,hindering the identification of the active sites and potentially diluting the concentration of real active sites while weakening their electronic interactions with reaction intermediates.Herein,this work proposes an entropy-engineering strategy in metal nanoparticle-embedded nitrogen carbon electrocatalysts,implemented by entropy-engineered Prussian blue analogs(PBA)as precursors to enhance the catalytic activity of primary Cu-Fe active sites.Through the introduction of the micro-strains driven by entropy engineering,density functional theory(DFT)calculations and geometric phase analysis(GPA)using Lorentz electron microscopy further elucidate the optimization of the adsorption/desorption of intermediates.Furthermore,the multi-dimensional morphology and the size diminishment of the nanocrystals serve to expand the electrochemical area,maximizing the catalytic activity for both ORR and OER.Notably,the Zn-air battery assembled with CuFeCoNiZn-NC operated for over 1300 h with negligible decay.This work presents a paradigm for the design of low-cost electrocatalysts with entropy engineering for multi-step reactions. 展开更多
关键词 prussian blue analog STRAINS transition metal-based catalyst zinc-air battery
在线阅读 下载PDF
Prussian blue analogues derived MO/MFe_(2)O_(4)(M=Ni,Cu,Zn)nanoparticles as a high-performance anode material for enhanced lithium storage
8
作者 Qingyun Yang Yue Ma +5 位作者 Quanyi Ye Yiqing Liu Yuhong Luo Yongbo Wu Zhiguang Xu Xiaoming Lin 《Chinese Journal of Structural Chemistry》 2025年第8期44-54,共11页
Transition metal oxides(TMOs)have received extensive attention for their unique physical and chemical properties.It is worth noting that Fe-based materials stand out because of their rich natural resources,low toxicit... Transition metal oxides(TMOs)have received extensive attention for their unique physical and chemical properties.It is worth noting that Fe-based materials stand out because of their rich natural resources,low toxicity,low price and other advantages,but at the same time confront with critical challenges such as capacity attenuation and volume expansion.Here,a universal synthesis method of MO/MFe_(2)O_(4)(M=Ni,Cu,Zn)nanomaterials derived from Prussian blue analogues(PBAs)is proposed based on the self-sacrificing template strategy of metal-organic frameworks(MOFs).The calcined products retain the porous structure and small particle size of PBAs,which shorten the ion transport path,provide abundant electroactive sites and void space,effectively alleviate the effect of volume expansion,and improve the reaction kinetics.These MO/MFe_(2)O_(4)anode materials exhibit excellent cyclic reversibility and stability during repeated charge/discharge process,among which,NiO/NiFe_(2)O_(4) shows the best electrochemical performance,retaining a superior specific capacity of 1301.7 mAh g^(-1) following 230 cycles at 0.1 A g^(-1).In addition,the lithium adsorption capacity of the materials was further explored through the calculation of density functional theory(DFT).The research perspectives and strategies reported in this paper have strong universality and offer innovative insights for the synthesis of alternative advanced materials. 展开更多
关键词 Bimetallic transition metal oxides prussian blue analogues Metal-organic frameworks Lithium-ion battery ANODE
原文传递
Preparation,electrochemical properties and energy storage mechanism of vanadium-based Prussian blue analogues as cathode materials for aqueous ammonium ion batteries
9
作者 Tao-tao LI Jin-peng QU +3 位作者 Lu-lu ZHAO Peng-fei WANG Jun-hong ZHANG Ting-feng YI 《Transactions of Nonferrous Metals Society of China》 2025年第9期3093-3107,共15页
To explore high-performance cathode materials for aqueous ammonium ion batteries(AAIBs),vanadium-based Prussian blue analogue composites(VFe-PBAs)were prepared by hydrothermal coprecipitation method to enhance the rev... To explore high-performance cathode materials for aqueous ammonium ion batteries(AAIBs),vanadium-based Prussian blue analogue composites(VFe-PBAs)were prepared by hydrothermal coprecipitation method to enhance the reversible storage of NH_(4)^(+).Benefiting from the stable three-dimensional structure and spacious gap position,VFe-PBAs-2 cathode displays excellent electrochemical activity and rate performance,achieving a high specific capacity of 84.3 mA·h/g at a current density of 1000 mA/g.In addition,VFe-PBAs-2 cathode also shows impressive long-term cycle durability with 85.2% capacity retention after 3×10^(4) cycles at 5000 mA/g.The synthesized cathode materials combined with the high electrochemical activity of vanadium ions significantly promote the rapid transfer of NH_(4)^(+).Furthermore,NH_(4)^(+)embedding/extraction mechanism of VFe-PBAs-2 cathode was revealed by electrochemical kinetics tests and advanced ex-situ characterizations.The experimental results demonstrate that vanadium-modified VFe-PBAs-2 as a cathode material can remarkably improve the capacity,electrochemical activity and cycling stability of AAIBs to achieve high performance NH_(4)^(+)storage. 展开更多
关键词 energy storage aqueous ammonium ion battery prussian blue analogues rate performance cycling stability
在线阅读 下载PDF
Recent progress of Prussian blue analogues as cathode materials for metal ion secondary batteries
10
作者 Xin-Yuan Fu Lu-Lu Zhang +2 位作者 Cheng-Cheng Wang Hua-Bin Sun Xue-Lin Yang 《Rare Metals》 2025年第1期34-59,共26页
With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Elec... With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Electrochemical energy storage,as the most popular and promising energy storage method,has received extensive attention.Currently,the most widely used energy storage method is metal-ion secondary batteries,whose performance mainly depends on the cathode material.Prussian blue analogues(PBAs)have a unique open framework structures that allow quick and reversible insertion/extraction of metal ions such as Na^(+),K^(+),Zn^(2+),Li^(+)etc.,thus attracting widespread attention.The advantages of simple synthesis process,abundant resources,and low cost also distinguish it from its counterparts.Unfortunately,the crystal water and structural defects in the PBAs lattice that is generated during the synthesis process,as well as the low Na content,significantly affect their electrochemical performance.This paper focuses on PBAs’synthesis methods,crystal structure,modification strategies,and their potential applications as cathode materials for various metal ion secondary batteries and looks forward to their future development direction. 展开更多
关键词 prussian blue analogs Cathode material Metal-ion secondary batteries Synthesis method Modification strategy
原文传递
Signal amplificated electrochemical immunosensor for β-lactoglobulin allergen detection in dairy products applying AuNPs/Prussian blue/CMK-8 composite
11
作者 Jingying Yang Lin Li +2 位作者 Xinmiao Ma Shuo Wang Mingfei Pan 《Food Science and Human Wellness》 2025年第8期3249-3257,共9页
Herein,a novel label-free electrochemical immunosensor was fabricated via immobilizing specific anti-β-lactoglobulin(β-LG)antibodies(Abs)onto an integrated electrode of gold nanoparticles(AuNPs)/Prussian blue(PB)/cu... Herein,a novel label-free electrochemical immunosensor was fabricated via immobilizing specific anti-β-lactoglobulin(β-LG)antibodies(Abs)onto an integrated electrode of gold nanoparticles(AuNPs)/Prussian blue(PB)/cubic Ia3d structured mesoporous carbon(CMK-8).This immunosensor allowed for the quantitative detection of the major milk allergenβ-LG.CMK-8 with excellent electrical conductivity and uniformly adjustable pore structure was modified on the glassy carbon electrode(GCE)and served as the sensitive substrate for the electro-polymerization of PB,forming the redox-active layer.AuNPs were subsequently electrochemically deposited on PB/CMK-8/GCE to improve the electrical conductivity and utilized as the connector for Abs immobilization.Duringβ-LG detection,the Abs-modified AuNPs/PB/CMK-8/GCE exhibited a significant reduction in differential pulse voltammetry current signal when exposed toβ-LG,displaying an inverse dose-dependent relationship.The developed electrochemical immunosensor demonstrated good detection performance forβ-LG,with a wider linear range of 0.01-100 ng/mL and a lower detection limit of 4.72 pg/mL.Meanwhile,the sensor exhibited remarkable repeatability,reproducibility,stability and anti-interference capabilities,which was further applied to detectβ-LG in dairy food,achieving satisfactory recoveries(89.2%-98.8%)and lower relative standard deviation(£3.1%).Therefore,this innovative electrochemical method for food allergen detection holds great potential application in food safety determination and evaluation. 展开更多
关键词 LABEL-FREE Electrochemical immunosensor Cubic Ia3d structured mesoporous carbon prussian blue Β-LACTOGLOBULIN
在线阅读 下载PDF
Apatinib and gamabufotalin co-loaded lipid/Prussian blue nanoparticles for synergistic therapy to gastric cancer with metastasis 被引量:2
12
作者 Binlong Chen Yanzhong Zhao +5 位作者 Zichang Lin Jiahao Liang Jialong Fan Yanyan Huang Leye He Bin Liu 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第5期707-721,共15页
Due to the non-targeted release and low solubility of anti-gastric cancer agent,apatinib(Apa),a first-line drug with long-term usage in a high dosage often induces multi-drug resistance and causes serious side effects... Due to the non-targeted release and low solubility of anti-gastric cancer agent,apatinib(Apa),a first-line drug with long-term usage in a high dosage often induces multi-drug resistance and causes serious side effects.In order to avoid these drawbacks,lipid-film-coated Prussian blue nanoparticles(PB NPs)with hyaluronan(HA)modification was used for Apa loading to improve its solubility and targeting ability.Furthermore,anti-tumor compound of gamabufotalin(CS-6)was selected as a partner of Apawith reducing dosage for combinational gastric therapy.Thus,HA-Apa-Lip@PB-CS-6 NPs were constructed to synchronously transport the two drugs into tumor tissue.In vitro assay indicated that HA-Apa-Lip@PB-CS-6 NPs can synergistically inhibit proliferation and invasion/metastasis of BGC-823 cells via downregulating vascular endothelial growth factor receptor(VEGFR)and matrix metalloproteinase-9(MMP-9).In vivo assay demonstrated strongest anti-tumor growth and liver metastasis of HA-Apa-Lip@PB-CS-6 NPs administration in BGC-823 cells-bearing mice compared with other groups due to the excellent penetration in tumor tissues and outstanding synergistic effects.In summary,we have successfully developed a new nanocomplexes for synchronous Apa/CS-6 delivery and synergistic gastric cancer(GC)therapy. 展开更多
关键词 Apatinib Gamabufotalin Lipid/prussian blue nanoparticles Gastric cancer
在线阅读 下载PDF
Progress on Transition Metal Ions Dissolution Suppression Strategies in Prussian Blue Analogs for Aqueous Sodium-/Potassium-Ion Batteries 被引量:2
13
作者 Wenli Shu Junxian Li +3 位作者 Guangwan Zhang Jiashen Meng Xuanpeng Wang Liqiang Mai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期142-168,共27页
Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonethel... Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries. 展开更多
关键词 prussian blue analogs Transition metal ions dissolution Suppression strategies Aqueous sodium-ion batteries Aqueous potassium-ion batteries
在线阅读 下载PDF
Experimental and computational optimization of Prussian blue analogues as high-performance cathodes for sodium-ion batteries:A review 被引量:2
14
作者 Gwangeon Oh Junghoon Kim +4 位作者 Shivam Kansara Hyokyeong Kang Hun-Gi Jung Yang-Kook Sun Jang-Yeon Hwang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期627-662,I0015,共37页
In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional t... In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems. 展开更多
关键词 prussian blue analogs(PBAs) Sodium ion batteries(SIBs) Structural engineering Electrolyte modifications Experiments Density functional theory(DFT)
在线阅读 下载PDF
Amino modified nanofibers anchored to Prussian blue nanoparticles selectively remove Cs^(+)from water
15
作者 Shanshan Feng Jingshuai Gao +8 位作者 Shouzhu Li Xun Cao Jie Ni Xiuli Yue Wei Zheng Yuyao Li Xueqi Hu Yao Zhang Sheng Feng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第12期39-54,共16页
To improve the selective separation performance of silica nanofibers(SiO_(2)NFs)for cesium ions(Cs+)and overcome the defects of Prussian blue nanoparticles(PB NPs),PB/SiO_(2)-NH_(2)NFs were prepared to remove Cs^(+)fr... To improve the selective separation performance of silica nanofibers(SiO_(2)NFs)for cesium ions(Cs+)and overcome the defects of Prussian blue nanoparticles(PB NPs),PB/SiO_(2)-NH_(2)NFs were prepared to remove Cs^(+)from water.Among them,3-aminopropyltriethoxysilane(APTES)underwent an alkylation reaction with SiO_(2),resulting in the formation of a dense Si-O-Si network structure that decorated the surface of SiO_(2)NFs.Meanwhile,the amino functional groups in APTES combined with Fe3+and then reacted with Fe2+to form PB NPs,which anchored firmly on the aminoated SiO_(2)NFs surface.In our experiment,the maxi-mumadsorption capacity of PB/SiO_(2)-NH_(2)NFs was 111.38 mg/g,which was 31.5mg/g higher than that of SiO_(2)NFs.At the same time,after the fifth cycle,the removal rate of Cs^(+)by PB/SiO_(2)-NH_(2)NFs adsorbent was 75.36%±3.69%.In addition,the adsorption isotherms and adsorption kinetics of PB/SiO_(2)-NH_(2)NFs were combined with the Freundlich model and the quasi-two-stage fitting model,respectively.Further mechanism analysis showed that the bond between PB/SiO_(2)-NH_(2)NFs and Cs^(+)was mainly a synergistic action of ion exchange,electrostatic adsorption and membrane separation. 展开更多
关键词 Electrostatic spinning NANOFIBERS Separation prussian blue RADIONUCLIDE
原文传递
Cesium-doped manganese-based Prussian blue analogue as a high-efficiency cathode material for potassium-ion batteries
16
作者 Jie Wang Zeyu Yuan +6 位作者 Jiaying Liao An Li Yifan Xu Haijie Qi Yuehua Man Yanqi Lv Xiaosi Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期120-127,共8页
Prussian blue analogues (PBAs) are regarded as promising cathode materials for potassium-ion batteries(PIBs) owing to their low cost and high reversible capacity.Compared to other PBAs,potassium manganese hexacyanofer... Prussian blue analogues (PBAs) are regarded as promising cathode materials for potassium-ion batteries(PIBs) owing to their low cost and high reversible capacity.Compared to other PBAs,potassium manganese hexacyanoferrate (KMnHCF) stands out for its superior capacity and operating voltage.However,Jahn-Teller effect of Mn^(3+)and the structural collapse caused by potassium ion insertion/extraction still affect the structural stability and electrochemical performance of this material.Herein,a green and efficient synthesis method is adopted to substitute potassium ions in KMnHCF with an appropriate amount of cesium ions to form a column effect.Cesium-doped KMnHCF (Cs-KMnHCF) mitigates the irreversible structural damage caused by potassiation/depotassiation and the Jahn-Teller effect,thereby improving the cycling stability.In addition,it widens the lattice channels,reduces the diffusion barrier of potassium ions,and optimizes the diffusion kinetics.By rationally controlling the doping amount of Cs^(+),the obtained K_(1.71)Cs_(0.05)Mn[Fe(CN)_(6)]_(0.95·0.05)·0.88H_(2)O exhibits remarkable electrochemical performance,with an initial discharge capacity of 137.6 mA h g^(-1)at a current density of 20 mA g^(-1)and a capacity retention of 89.6%after 600 cycles at 200 mA g^(-1).More importantly,when assembled with a pitch-derived soft carbon anode,the full cell manifests excellent cycle stability and rate performance.This work is expected to provide a highly efficient cathode material for the practical application of PIBs. 展开更多
关键词 prussian blue analogue Cathode material Potassium-ion battery Ion exchange Column effect
在线阅读 下载PDF
FeNi Prussian blue analogues on highly graphitized carbon nanosheets as efficient glucose sensors
17
作者 Jin-Hang Xue Qiu-Hong Sun +4 位作者 Cheng Han Yuan-Dong Yang Shao-Jie Xu Qi-Peng Li Jin-Jie Qian 《Rare Metals》 SCIE EI CAS CSCD 2024年第6期2730-2738,共9页
Meeting the continuous glucose monitoring requirements of individuals necessitates the research and development of sensors with high sensitivity and stability.In this study,a straightforward strategy was proposed for ... Meeting the continuous glucose monitoring requirements of individuals necessitates the research and development of sensors with high sensitivity and stability.In this study,a straightforward strategy was proposed for synthesizing ultra-thin oxygen-rich graphitized carbon nanosheets(denoted as GCS-O).These nanosheets are obtained by calcining a topologically two-dimensional indium-based coordination polymer.Subsequently,the growth of FeNi Prussian blue analogue(PBA)on GCS-O effectively introduces active sites and increases the nitrogen content within the carbonaceous matrix.The resulting FeNi-PBA/GCS-O composite exhibits excellent glucose sensing performance with a broad linear range of 1 to 1300μmol·L^(-1).Meanwhile,it also achieves a high sensitivity of 2496μA·mmol^(-1)·L·cm^(-2),a limit of detection of 100nmol·L^(-1)(S/N=3),and commendable long-term durability.The relatively simple synthesis process,exceptional sensitivity,and satisfactory electrochemical sensing performance of FeNi-PBA/GCS-O open up new directions for biosensor applications. 展开更多
关键词 Coordination polymer Carbon nanosheet prussian blue analogue Surface reconstruction Glucose oxidation
原文传递
Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction
18
作者 Jiayu Xu Meng Li +1 位作者 Baoxia Dong Ligang Feng 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第6期222-228,共7页
Hybrid metal-organic framework(MOF)derivatives play a significant role in the novel catalyst development in energy conversion reactions.Here,we demonstrated the low-temperature fully fluorinated zeolitic imidazole fra... Hybrid metal-organic framework(MOF)derivatives play a significant role in the novel catalyst development in energy conversion reactions.Here,we demonstrated the low-temperature fully fluorinated zeolitic imidazole framework(ZIF)coupled with a three-dimensional open framework Prussian blue analog(PBA)with combined advantages for electrocatalytic oxygen evolution reaction(OER)in water splitting reaction.The spectroscopic analysis and the electrochemical studies revealed the combined advantages of efficient electronic effect and active site synergism.Because of good conductivity improvement by Ndoped carbon derived from ZIF and the high electrochemical surface area and active site exposure from PBA derivatives,good catalytic performance was obtained on the optimal catalyst of Co Ni ZIF/Co Fe-PBAF-300,which required a low overpotential of 250 m V to reach 10 m A/cm^(2)loaded on the glassy carbon electrode,with Tafel slope of 47.4 m V/dec,and very high dynamic and steady stability.In addition,the multi-component with the mixed structure from highly polar metal fluorides promoted the easy formation of the active phase as revealed by the post-sample analysis.The current results showed a novel composite catalyst materials development from the hybrid MOF derivatives,which would be promising in the electrolysis of water oxidation reactions and energy-relevant catalysis reactions. 展开更多
关键词 Metal-organic framework Zeolitic imidazole framework prussian blue analog FLUORIDATION MULTI-COMPONENT Oxygen evolution reaction
原文传递
Hollow and substrate-supported Prussian blue,its analogs,and their derivatives for green water splitting
19
作者 Jing-Yi Xie Bin Dong 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第11期1843-1864,共22页
To meet the current energy needs of society,the highly efficient and continuous production of clean energy is required.One of the key issues facing the green hydrogen evolution is the construction of efficient,low-cos... To meet the current energy needs of society,the highly efficient and continuous production of clean energy is required.One of the key issues facing the green hydrogen evolution is the construction of efficient,low-cost electrocatalysts.Prussian blue(PB),Prussian blue analogs(PBAs),and their derivatives have tunable metal centers and have attracted significant interest as novel photo-and electrochemical catalysts.In this review,recent research progress into PB/PBA-based hollow structures,substrate-supported nanostructures,and their derivatives for green water splitting is discussed and summarized.First,several remarkable examples of nanostructured PB/PBAs supported on substrates(copper foil,carbon cloth,and nickel foam)and hollow structures(such as single-shelled hollow boxes,open hollow cages,and intricate hollow structures(multi-shell and yolk-shell))are discussed in detail,including their synthesis and formation mechanisms.Subsequently,the applications of PB/PBA derivatives((hydr)oxides,phosphides,chalcogenides,and carbides)for water splitting are discussed.Finally,the limitations in this research area and the most urgent challenges are summarized.We hope that this review will stimulate more researchers to develop technologies based on these intricate PB/PBA structures and their derivatives for highly efficient,green water splitting. 展开更多
关键词 prussian blue prussian blue analogues Hollow structure Substrate-supported structures Green water splitting
在线阅读 下载PDF
Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries 被引量:12
20
作者 Chiwei Xu Zhengwei Yang +6 位作者 Xikun Zhang Maoting Xia Huihui Yan Jing Li Haoxiang Yu Liyuan Zhang Jie Shu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期92-127,共36页
In the applications of large-scale energy storage,aqueous batteries are considered as rivals for organic batteries due to their environmentally friendly and low-cost nature.However,carrier ions always exhibit huge hyd... In the applications of large-scale energy storage,aqueous batteries are considered as rivals for organic batteries due to their environmentally friendly and low-cost nature.However,carrier ions always exhibit huge hydrated radius in aqueous electrolyte,which brings difficulty to find suitable host materials that can achieve highly reversible insertion and extraction of cations.Owing to open threedimensional rigid framework and facile synthesis,Prussian blue analogues(PBAs)receive the most extensive attention among various host candidates in aqueous system.Herein,a comprehensive review on recent progresses of PBAs in aqueous batteries is presented.Based on the application in different aqueous systems,the relationship between electrochemical behaviors(redox potential,capacity,cycling stability and rate performance)and structural characteristics(preparation method,structure type,particle size,morphology,crystallinity,defect,metal atom in highspin state and chemical composition)is analyzed and summarized thoroughly.It can be concluded that the required type of PBAs is different for various carrier ions.In particular,the desalination batteries worked with the same mechanism as aqueous batteries are also discussed in detail to introduce the application of PBAs in aqueous systems comprehensively.This report can help the readers to understand the relationship between physical/chemical characteristics and electrochemical properties for PBAs and find a way to fabricate high-performance PBAs in aqueous batteries and desalination batteries. 展开更多
关键词 prussian blue analogues ELECTROCHEMISTRY CATHODE Aqueous batteries Desalination batteries
在线阅读 下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部